Total views : 270

A Theoretical Analysis of the Dark Current in Quantum Dot Infrared Photodetector using Non- Equilibrium Green’s Function Model


  • School of Electronics Engineering, VIT University, Chennai - 600127, Tamil Nadu, India


Objectives: This paper entails the theoretical computation of dark current in asgrown and annealed Quantum Dot Infrared Photodetectors (QDIP). Methods/Statistical analysis: Here, non-equillibrium Green’s function was used to model the dark current characteristics in asgrown and annealed QDIPs. Post-growth thermal annealing, which reduces the traps states in the QD is also simulated using Fick’s second law of diffusion. We have developed a selfconsistent Poisson’s equation solver to compute the potential profile and quasi Fermi level at QD and at the contacts. Findings: The theoretically computed dark current obtained from our model is in good agreement with the experimental data, which validates the efficacy of our model. Our computation also predicts decrease in dark current in the QD with increase in annealing temperature at low bias voltage from0.25-1.5 volts. Application/ Improvements: Here, we have optimized the dark current for different annealing temperatures for improving the performance of QD device for infrared sensing applications


Dark Current, Non-Equilibrium Green’s Function, Quantum Dot Photodetectors, Theoretical Modeling.

Full Text:

 |  (PDF views: 250)


  • Ledentsov NN, Grundmann M, Heinrichsdorff F, Bimberg D, Ustinov VM, ZhukovA E, Maximov MV, Alferov ZI, Lott JA. Quantum-dot heterostructure lasers. IEEE Journal of Selected topics in Quantum Electronics. 2000 May; 6(3):439–451.
  • Bimberg D. Quantum dot for lasers, amplifiers and computing. Journal of Physics D: Applied Physics. 2005 Jun; 38(13):2055–8.
  • Liu HC. Quantum dot infrared photodetectors.bOpto-Electronics Review. 2003; 11(1):1–5.
  • Maimon S, Finkman E, Bahi rG, Schacham SE, Garcia JM, Petroff PM. Inter sublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Applied Physics Letters. 1998 Jul; 73(14):2003–5.
  • SaiChaitanya BVS, Sekhar TC, Ramesh NVK. IOT based Smart IR device using CC3200. Indian Journal of Science and Technology. 2016 Apr; 9(16):1–5.
  • Ryzhi V. The theory of quantum-dot infrared phototransistors. Semiconductor Science Technology. 1996; 11:759–65.
  • Ryzhi V, Pipa V, Khmyrova I, Mitin V, Willander M. Dark current in quantum dot infrared photodetectors. Japan Society Applied Physics. 2000 Dec; 39:L1283–5.
  • Bhattacharya P, Su XH, Chakrabarti S, Ariyawansa G, Perera AGU. Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature. Applied Physics Letters.2005 May; 86(19).
  • Stiff-Roberts AD, Su XH, Chakrabarti S, Bhattacharya P. Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors. IEEE Photonics Technology Letters. 2004 Mar; 16(3):867–9.
  • Naser MA, Deen MJ, Thompson DA. Theoretical modeling of dark current in quantum dot infrared photodetectors using non-equilibrium Green’s functions. Journal of Applied Physics. 2008 Jul; 104(1).
  • Naser MA, Deen MJ, Thompson DA. Photocurrent modeling and detectivity optimization in resonant tunneling quantum dot infrared photodetector. IEEE Journal of Quantum Electronics. 2010 Jun; 46(6):849–59.
  • Tavakoli SG, Naser MA, Thompson DA, Deen MJ. Experimental characterization and theoretical modeling of the strain effect on the evolution and inter-band transitions of InAs quantum dots grown on I metamorphic pseudo subtrates on GaAs wafers. Journal Applied Physics. 2009 Sep; 106(6).
  • Naser MA, Deen MJ, Thompson DA. Spectral function of InAs/InGaAs quantum dot in a well detector using Green’s functions. Journal Applied physics. 2006 Dec; 100(9).
  • Ghosh K, Naresh Y, Reddy NS. A Theoretical investigation on the dimensions and annealing effects of InAs/GaAs quantum dots for device applications at high bit-rate optical transmission window of 1.3–1.55 μm. Advanced Materials Research. 2012 Oct; 584:423–7.
  • Yang T, Nishioka M, Arakawa Y. Optimizing the GaAs capping layer growth of 1.3um InAs/GaAs quantum dots by a combined two-temperature and annealing process at low temperatures. Journal of Crystal Growth .2008 Dec; 310(24):5469–72.
  • Perret N, Morris D, Franchomme L, Cote R, Fafard S, Aimez V, Beanvais J. Origin of inhomogeneous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots. Physical Review B. 2000 Aug; 62(8).
  • Leon R, KimY, Jagadish C, Gal M, Zou J, Cockayne DJH. Effect of inter diffusion on the luminescence of InGaAs/GaAs quantum dots. Applied Physics Letters.1996 Jul; 69(13).


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.