Total views : 99

A Fast Strategy to Determine the Physical and Electrical Parameters of Silicon Photovoltaic Cell


  • Laboratoire Interdisciplinaire de Recherche en Sciences et Techniques (LIRST), Polydisciplinary Faculty, Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal - 23000, Morocco
  • Laboratoire de Genie de l’Energie, Matériaux et Systèmes (LGEMS), National School of Applied Sciences, B.P. 1136, Ibn Zohr University, Agadir - 80000, Morocco


Objectives: This paper proposes a fast strategy to extract the electrical parameters of photovoltaic cell (PV) and determine both the minoritycarrier’s lifetime and the diffusion lengths of photovoltaic cell using the double-diode model. Methods/ Statistical Analysis: The polycrystalline silicon (poly-Si) junction is chosen in this work due to the importance of its proprieties in industrial and economic fields. The proposed method to extract the PV electrical parameters contains two steps. The first is based on the graphical adjustments to choose the initial values of these parameters, and the second method uses numerical approach based on the Modified Newton-Rap son’s algorithm. Findings: The values of obtained parameters are compared to the others methods and give a considerable agreement. The statistical errors (MBE and t-statistic) are about 10-8 and 10-10 respectively. Furthermore, the found values of both the minoritycarrier’s lifetime and the diffusion lengths are precisely comparable with theoretical models, and give a best value. Application/Improvements: The obtained values give very useful information on the cell intrinsic quality, and can improve the conception and realization performances of the solar cell with high conversion efficiency.


Carrier Lifetime, Diode, Photovoltaic, Parameters Extraction

Full Text:

 |  (PDF views: 58)


  • Zhao J, Wang A, Campbell P, Green MA. A 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping. IEEE Transactions on Electron Devices.1999; 46(10):1978–83. Crossref
  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications. 2016; 2 (1):3–11.Crossref
  • Chahid E, Idali MO, Feddaoui M, Erritali M and Malaoui A. Effect of measurement factors on photovoltaic cell parameters extracting. International Journal of Electrical and Computer Engineering - IJECE. 2017 Feb; 7(1):50–7.
  • Revati D, Natarajan E. Enhancing the Efciency of Solar Cell by Air Cooling. Indian Journal of Science and Technology.2016 Feb; 9(5):1–6. Crossref
  • Press W H, Vettering WT, Teukolsky SA. Numerical Recipes in C: The Art of Scientific Computing. 2nd edition.UK: Cambridge University Press. 1992; 1–949.
  • Gupta MK, Jain R. Design and Simulation of Photovoltaic Cell Using Decrement Resistance Algorithm. Indian Journal of Science and Technology. 2013 May; 6(5):4537–41.
  • Marquardt D. An Algorithm for Least Squares Estimation of Non Linear Parameters. Journal of the Society for Industrial and Applied Mathematics. 1963; 11(2):431–41.Crossref
  • Malaoui A, Barrah E, Antari J. Implementation a new approach for modeling and determining the electrical parameters of solar cells. International Journal of Innovation and Applied Studies. 2016; 15(2):329–38.
  • Haynes JR, Shockley W. The Mobility and Life of Injected Holes and Electrons in Germanium. Physical Review. 1951 Mar; 81(5):835–43. Crossref
  • Elani Ussama AI. The effective carrier lifetime measurement in silicon: The conductivity modulation method.Journal of King Saud University – Science. 2010; 22(1):9–13. Crossref 11. Corbett JW, Bourgoin JC. Les défauts ponctuels dans les semiconducteurs.Journal de Physique Colloques. 1978; 39(2):17–21. Crossref
  • Chahid E, Oumhanad I, Feddaoui M, Malaoui A. Study of the physical parameters on the GaAs solar cell efficiency.Journal of Ovonic Research. 2017 May- Jun; 13(3):119–28.
  • Hovel HJ. Semiconductors and Semimetals. New York: Academic. 1975; 11:86–100.
  • Laudani A, Riganti-Fulginei F, Salvini A. High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy. 2014; 103:316–26. Crossref
  • Ghani F, Duke M, Carson J. Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: experimental evaluation. Solar Energy. 2013; 87:246–53. Crossref
  • Bouzidi K, Chegaar M, Bouhemadou A. Solar cells parameters evaluation considering the series and shunt resistance.Solar Energy Materials and Solar Cells. 2007; 91:1647–51.Crossref
  • Malaoui A. New method for improving the quality of electrical measurements: application to the extraction of the intrinsic parameters of the photovoltaic cells. International Journal of Innovation and Applied Studies. 2016; 15(2):375–86.
  • Malaoui A, El mansouri A. Deux nouvelles méthodes complémentaires pour l’extraction optimale des paramètresélectriques des jonctions.Revue des Energies Renouvelables.2010; 13(2) :199–212.
  • Appelbaum J, Peled A. Parameters extraction of solar cells-A comparative examination of three methods. Solar Energy Materials and Solar Cells. 2014; 122:164–73. Crossref
  • Adel A, Hamdi A, Montaser A. Deduction of two diode model parameters for photovoltaic system. Proceedings of the 3rd International Conference on Energy Systems and Technologies, Cairo, Egypt. 2015. p. 121–35.
  • Ben-Isael A. A Newton-Raphson method for the solution of systems of equations. Journal of Mathematical Analysis and Applications.1966; 15(2):243–52. Crossref
  • Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C.Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers. International Journal of Sustainable Energy. 1986; 4(1):1–12. Crossref
  • Green MA, Blakers AW, Shi JQ, Keller EM, Wenham SR.High efficiency silicon solar cells.IEEE Transactions on Electron Devices. 1984; 31:679–83. Crossref
  • Al Rashidi MR, El-Naggar KM, Al Hajri MF. Parameters Estimation of Double Diode Solar Cell Model. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering. 2013; 7(2):118–21.
  • Simoen E, Vantellmont J, Layes C. Effective generation-recombination parameters in high-energy proton irradiatedsilicon diodes. Applied Physics Letters. 1996; 69:2858–60. Crossref
  • Taretto K, Rau U, Werner JH. Method to extract diffusion length from solar cell parameters-Application to polycrystalline silicon.Journal of Applied Physics. 2003; 93:5447–55.Crossref
  • Varshni YP.Temperature dependence of the energy gap in semiconductors. Physica. 1967; 34:149–54. Crossref 28. Yang ES. Microelectronics Devices.New York: McGrawHill. 1988.
  • Liou J, Wong WW. Comparison and optimization of the performance of Si and GaAs. Solar Energy Materials and Solar Cells. 1992; 28(1):9–28. Crossref
  • Sze SM. Physics of Semiconductor Devices. 2th edition.John Wiley & Sons. 1981; 868pp. PMCid:PMC348793


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.