Total views : 1939

A Framework to Construct Data Quality Dimensions Relationships

Affiliations

  • Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia

Abstract


Data and information obtained from data analysis is an essential asset to construct and support information systems. As data is a significant resource, the quality of data is critical to enhance data quality and increase the effectiveness of business processes. Relationships among all four major data quality dimensions for process improvement are often neglected. For this reason, this study proposes to construct a reliable framework to support process activities in information systems. This study focuses on four critical quality dimensions; accuracy, completeness, consistency, and timeliness. A qualitative approach was conducted using a questionnaire and the responses were assessed to measure reliability and validity of the survey. Factor analysis and Cronbach-alpha test were applied to interpret the results. The results show that the items of each data quality dimension and improvement process are reliable and valid. This framework can be used to evaluate data quality in an information system to improve the involved process.

Keywords

Data Quality Dimension, Framework, Relationship, Validation, Information Systems, Factor Analyzing

Full Text:

 |  (PDF views: 953)

References


  • Al-Hakim L (2007). Information quality management: theory and applications, Igi Global. Idea Group Publishing, Hershy, USA, London, UK, 119-144.
  • Alizamini F G, Pedram M M et al. (2010). Data quality improvement using fuzzy association rules, Electronics and Information Engineering (ICEIE), International Conference On Electronics and Information Engineering (ICEIE), 2010, V1-468-V1-472. [doi:10.1109/ICEIE.2010.5559676]
  • Ballou D P, and Pazer H L (1985). Modeling data and process quality in multi-input, multi-output information systems, Management Science, vol 31(2), 150-162.
  • Barone D, Stella F et al. ( 2010). Dependency discovery in data quality, Proceedings of the 22nd international conference on Advanced information systems engineering (CAiSE'10), Pernici B (Ed.), Springer-Verlag, Berlin, Heidelberg, 53-67.
  • Batini C, Cappiello C et al. (2009). Methodologies for data quality assessment and improvement, ACM Computing Surveys, vol 41(3), 1-52, doi:[10.1145/1541880.1541883].
  • Calvo-Manzano J A, Cuevas G et al. (2012). Methodology for process improvement through basic components and focusing on the resistance to change, Journal of Software: Evolution and Process, vol 24(5), 511-523, doi:10.1002/smr.505.
  • Berner E S, Kasiraman R K et al. (2005). Data quality in the outpatient setting: impact on clinical decision support systems, AMIA Annual Symposium Proceedings, vol 2005, 41-45, American Medical Informatics Association, [PMCID: PMC1560426].
  • Bovee M, Srivastava R P et al. (2003). A conceptual framework and belief-function approach to assessing overall information quality, International Journal of Intelligent Systems, vol 18(1), 51-74.
  • Carey M J, Ceri S et al. (2006). Data-Centric Systems and Applications, Springer, Verlag Berlin Heidelberg, [doi: 10.1007/978-3-540-76452-6].
  • Creswell J W (2009). Research design: Qualitative, quantitative, and mixed methods approaches, Chapter 1, 2nd Edn., London: Sage Publications, Inc, 14.
  • De Amicis F, Barone D et al. (2006). An analytical framework to analyze dependencies among data quality dimensions, Proceedings of the 11th International Conference on Information Quality (ICIQ), Cambridge, MA, USA, 369-383.
  • Eckerson W (2002). Data Warehousing Special Report: Data quality and the bottom line, Applications Development Trends.
  • English L P (1999). Seven deadly misconceptions about information quality, Information Impact International, Inc., Tennessee, Brentwood, 1-8.
  • Fisher C, Eitel L E et al. (2012). Introduction to information quality, AuthorHouse, USA , 126.
  • Gackowski Z J ( 2005). Informing systems in business environments: A purpose-focused view, Informing Science Journal, vol 8, 101-122.
  • Heinrich B, Kaiser M et al. (2007). How to measure data quality? A metric-based approach, Twenty Eighth International Conference on Information Systems, Montreal, 101-122.
  • Heravizadeh M, Mendling J et al. (2009). Dimensions of business processes quality (QoBP), Business Process Management Workshops, Springer, Berlin Heidelberg, vol 17, 80-91.
  • Huang H, Stvilia B et al. (2012). Prioritization of data quality dimensions and skills requirements in Genome annotation work, Journal of the American Society for Information Science and Technology, vol 63(1), 195-207, doi:10.1002/asi.21652.
  • Jarke M, Lenzerini M et al. (2003). Fundamentals of Data Warehouses, SIGMOD record, Springer-Verlag, vol 32(2), 55-56. [ISBN: 3-540-42089-4].
  • Katerattanakul P, and Siau K (1999). Measuring information quality of web sites: development of an instrument, Proceedings ICIS’99 of the 20th international conference on Information Systems, Charlotte, North Carolina, United States, Association for Information Systems, Atlanta, GA, USA, 279-285.
  • Lee Y W, Strong D M et al. (2002). AIMQ: a methodology for information quality assessment, Information & Management, vol 40(2), 133-146, doi:10.1016/S0378-7206(02)00043-5.
  • Leech N L, Barrett K C et al. (2008). Statics, spss For Intermediate, 3rd Edn., New York, London: Lawrence Erlbaum Associates Inc. Publishers, New Jersey, 58.
  • Li Y, and Osei-Bryson K-M (2010). Quality factory and quality notification service in data warehouse. Proceedings of the 3rd workshop on Ph.D. students in information and knowledge management - PIKM ’10, New York, New York, USA: ACM Press, 25-32. doi:[10.1145/1871902.1871907].
  • Lotfi Z, Shahnorbanun S et al. (2013). A Product Quality- Supply Chain Integration Framework, Journal of Applied Sciences, vol 13(1), 36-48, doi:[10.3923/jas.2013.36.48].
  • Liu L, and Chi L N (2002). Evolutional data quality: A theory-specific view, Proceedings of 7th International Conference on Information Quality (ICIQ 2002), Cambridge, Boston,MA, 292-304.
  • Madnick S E, Wang R Y et al. (2009). Overview and Framework for data and information quality research, Journal of Data and Information Quality (JDIQ), vol 1(1), 1-22. [doi:10.1145/1515693.1516680].
  • Maguire H (2007). Book Review: Data Quality: Concepts, Methodologies and Techniques, Batini C, Scannapieco M, International Journal of Information Quality, Springer, vol 1(4), 444-450. [ ISBN: 13 978-3-540-33172-8].
  • McGilvray D (2008). Executing data quality projects: Ten steps to quality data and trusted information. Morgan Kaufmann, Elsevier, Barlington, MA, USA. [ISBN: 978-0-12-374369-5].
  • Milano D, Scannapieco M et al. (2006). Design and Implementation of a Peer-to-Peer Data Quality Broker, Interoperability of Enterprise Software and Applications, Springer, London, 289-300, [DOI: 10.1007/1-84628-152-0_26].
  • Naumann F (2002). Quality-driven query answering for integrated information systems, Lecture Notes in Computer Science, Springer, Verlag Berlin Heidelberg, vol 2261, [ISBN 978-3-540-43349-1].
  • Redman T C, and Blanton A (1997). Data quality for the information age, 1st Edn., ACM Digital Library, Artech House, Inc., Norwood, MA, USA, [ISBN:0890068836].
  • Sadeghi A, and Clayton R (2000). The quality vs . timeliness tradeoffs in the BLS ES-202 administrative statistics, Federal Committee on Statistical Methodology, 1-7.
  • Scannapieco M, Missier P et al. (2005). Data Quality at a Glance, Datenbank-Spektrum, Citeseer, vol 14, 6-14.
  • Sidi F, Shariat Panahy P H et al. (2012). Data quality: A survey of data quality dimensions, 2012 International Conference on Information Retrieval and Knowledge Management, 300-304, doi:[10.1109/InfRKM.2012.6204995].
  • Shariat Panahy P H, Sidi F et al. (2012). Discovering Dependencies among Data Quality Dimensions: A Validation of Instrument, Journal of Applied Sciences, In press.
  • Strong D M, Lee Y W et al. (1997). 10 Potholes in the road to information quality, Computer, vol 30(8), 38-46 [doi:10.1109/2.607057].
  • Strong D M, Lee Y W et al. (1997). Data quality in context, Communications of the ACM, vol 40(5), 103-110, [doi:10.1145/253769.253804].
  • Tee S W, Bowen P L et al. (2007). Factors influencing organizations to improve data quality in their information systems, Accounting and Finance, vol 47(2), 335-355. doi:[10.1111/j.1467-629X.2006.00205.x].
  • Wang R Y, and Strong D M (1996). Beyond accuracy: What data quality means to data consumers, Journal of management information systems, vol 12(4), 5-33.
  • Wang K Q, Tong S R et al. (2008). Analysis of data quality and information quality problems in digital manufacturing. 2008 4th IEEE International Conference on Computing & Processing (Hardware/Software); Engineering Profession, Management of Innovation and Technology, 2008, ICMIT, IEEE, Bangkok, Thailand, 439-443, [doi:10.1109/ICMIT.2008.4654405].
  • Wei-Liang C, Shi-Dong Z et al. (2009). Anchoring the Consistency Dimension of Data Quality Using Ontology in Data Integration. 2009 Sixth Web Information Systems and Applications Conference, 201-205, doi:[10.1109/WISA.2009.32]
  • Wand Y W (1996). Anchoring data quality dimensions in ontological foundation, Communication of the ACM, vol 39(11), 86-95.
  • Christy S, Rajakumari S B et al. (2010). Quality data representation in web portal—A case study, Trendz in Information Sciences & Computing (TISC),IEEE, 230-232.
  • Heinrich B, Kaiser M et al. (2007). How to measure data quality? - a metric based approach by. Twenty Eighth International Conference on Information, Montreal, Canada. Systems, vol 4801,101-122.
  • Nunnally J C, and Bernstein I (1994). Psychometric theory, 3rd Edn., McGraw_Hill Inc: New York.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.