• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 33, Pages: 2663-2670

Original Article

A Modified OMP Algorithm with Reduced Feedback Overhead for Massive MIMO System

Received Date:03 August 2021, Accepted Date:18 September 2021, Published Date:11 October 2021


Objectives: Massive Multiple-Input and Multiple-Output (MIMO) is the optimum way to enhance the bandwidth issue, in which the feedback overhead is a challenging concern when tested with Frequency Division Duplex (FDD) systems. Conventional greedy search algorithms like Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) are based on the prior knowledge of the signal sparsity, which enhances overhead. So, the objective of this study is to develop a method with low complexity channel estimation and reduced feedback overhead. Methods: The proposed method is based on the residual vector which is updated after iteration and a threshold-based approach is utilized to decide the stopping criteria thereby controlling the number of iterations. The evaluation parameters used in the experimental analysis are Normalized Mean Square Error and channel capacity. Findings: The proposed method improves the effectiveness in signal recovery and reconstruction along with signal sparsity it also reduces the complexity of the estimation process and limits the feedback. This results in a high data rate and can be used in a massive MIMO system to optimize the channel estimation. Novelty : The proposed model is independent of the sparsity in the input vector and improves the effectiveness of the signal recovery and reduces the feedback burden. The proposed method is suitable for a 5G massive MIMO systems.

Keywords: Feedback overhead; CSI; OMP; Residue vector


  1. Lu L, Li GY, Swindlehurst AL, Ashikhmin A, Zhang R. An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing. 2014;8(5):742–758. Available from: https://dx.doi.org/10.1109/jstsp.2014.2317671
  2. Choi J, Love DJ, Bidigare P. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE Journal of Selected Topics in Signal Processing. 2014;8(5):802–814. Available from: https://dx.doi.org/10.1109/jstsp.2014.2313020
  3. Han Y, Lee J, Love DJ. Compressed Sensing-Aided Downlink Channel Training for FDD Massive MIMO Systems. IEEE Transactions on Communications. 2017;65(7):2852–2862. Available from: https://dx.doi.org/10.1109/tcomm.2017.2691700
  4. Ke M, Gao Z, Wu Y, Gao X, Schober R. Compressive Sensing-Based Adaptive Active User Detection and Channel Estimation: Massive Access Meets Massive MIMO. IEEE Transactions on Signal Processing. 2020;68:764–779. Available from: https://dx.doi.org/10.1109/tsp.2020.2967175
  5. Myzhang X, Chen. Segmental channel feedback for massive MIMO with compressive sensing. Computer Technology and Development. 2017;27(6):183–186.
  6. Dai L, Gao Z, Wang Z. Joint channel estimation and feedback with low overhead for FDD massive MIMO systems. 2015 IEEE/CIC International Conference on Communications in China (ICCC). 2015;p. 1–6. Available from: https://dx.doi.org/10.1109/ICCChina.2015.7448660
  7. Huang W, Huang Y, Xu W, Yang L. Beam-Blocked Channel Estimation for FDD Massive MIMO With Compressed Feedback. IEEE Access. 2017;5:11791–11804. Available from: https://dx.doi.org/10.1109/access.2017.2715984
  8. Shen W, Dai L, Shi Y, Shim B, Wang Z. Joint Channel Training and Feedback for FDD Massive MIMO Systems. IEEE Transactions on Vehicular Technology. 2016;65(10):8762–8767. Available from: https://dx.doi.org/10.1109/tvt.2015.2508033
  9. Schwarz S, Rupp M, Wesemann S. Grassmannian Product Codebooks for Limited Feedback Massive MIMO With Two-Tier Precoding. IEEE Journal of Selected Topics in Signal Processing. 2019;13(5):1119–1135. Available from: https://dx.doi.org/10.1109/jstsp.2019.2930890
  10. Zheng F, Chen Y, Pang B, Liu C, Wang S, Fan D, et al. An Efficient CSI Feedback Scheme for Dual-Polarized Massive MIMO. IEEE Access. 2018;6:23420–23430. Available from: https://dx.doi.org/10.1109/access.2018.2811838
  11. Sun H, Zhao Z, Fu X, Hong M. Limited Feedback Double Directional Massive MIMO Channel Estimation: From Low-Rank Modeling to Deep Learning. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2018;p. 1–5. Available from: https://dx.doi.org/10.1109/SPAWC.2018.8446005
  12. Liao Y, Yang X, Yao H, Chen L, Wan S. Spatial correlation based channel compression feedback algorithm for massive MIMO systems. Digital Signal Processing. 2019;94:38–44. Available from: https://dx.doi.org/10.1016/j.dsp.2019.07.004
  13. Liao Y, Chen L, Hua Y, Zhang S, Shen X, Yi H. M-SAMP: A Low-complexity Modified SAMP Algorithm for Massive MIMO CSI Feedback. 2018 IEEE/CIC International Conference on Communications in China (ICCC). 2018;p. 547–552. Available from: https://dx.doi.org/10.1109/ICCChina.2018.8641150
  14. Darshankumar C, Dalwadi HB, Soni. A Novel Channel Estimation Technique of MIMO-OFDM System based on Modified Kalman Filter. Indian Journal of Science and Technology. 2016;(9) 1–6. Available from: https://dx.doi.org/10.17485/ijst/2016/v9i36/97757
  15. Singh N, Shukla MK. Channel Estimation of DWT Based MIMO-OFDM System in Wireless Communication. Indian Journal of Science and Technology. 2019;12(46):01–08. Available from: https://dx.doi.org/10.17485/ijst/2019/v12i46/148006
  16. Hindy A, Mittal U, Brown T. CSI Feedback Overhead Reduction for 5G Massive MIMO Systems. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). 2020;p. 116–0120. Available from: https://dx.doi.org/10.1109/CCWC47524.2020.9031236
  17. Borges D, Montezuma P, Dinis R, Beko M. Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges. Electronics. 2021;10(14):1667. Available from: https://dx.doi.org/10.3390/electronics10141667
  18. Mashhadi MB, Gündüz D. Deep Learning for Massive MIMO Channel State Acquisition and Feedback. Journal of the Indian Institute of Science. 2020;100(2):369–382. Available from: https://dx.doi.org/10.1007/s41745-020-00169-2
  19. Yao S, Guan Q, Wang S, Xie X. Fast sparsity adaptive matching pursuit algorithm for large-scale image reconstruction. EURASIP Journal on Wireless Communications and Networking. 2018;2018(1). Available from: https://dx.doi.org/10.1186/s13638-018-1085-6
  20. Schnass K. Average Performance of Orthogonal Matching Pursuit (OMP) for Sparse Approximation. IEEE Signal Processing Letters. 2018;25(12):1865–1869. Available from: https://dx.doi.org/10.1109/lsp.2018.2878061
  21. Nassersadeghi M, Azghani. Channel Estimation using Block Sparse Joint Orthogonal Matching Pursuit in Massive MIMO Systems. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). ;p. 1–5. Available from: https://dx.doi.org/10.1109/CSICC52343.2021.9420624


© 2021 Matta & Siddiah. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.