• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 23, Pages: 2444-2454

Original Article

Breast Cancer Examination in Digitized Mammograms using Integrated K-Means Clustering with Garbor Filter and Shrunk Kernel KNN Method

Received Date:19 March 2024, Accepted Date:17 May 2024, Published Date:08 June 2024

Abstract

Objectives: To suggest an intelligent classification system for efficient breast cancer diagnosis that distinguishes between benign and malignant breast cancer. The goal of the research is to develop a unique CAD system for the detection & classification of breast cancer using novel K-Means clustering (KMC) with Gabor Filter (GF) and Shrunk Kernel K-Nearest Neighbor (KNN) classifier. Methods: Two different sorts of perspectives, such as Craniocaudal (CC) and Mediolateral oblique (MLO) mammograms are employed to improve diagnostic effectiveness. Utilizing an adaptive K-means clustering technique to segment the tumor. The Gabor filter is used in conjunction with the k-means clustering method to extract the features of the CC and MLO perspectives. The mammography image is finally classified into benign and malignant using a unique Shrunk Kernel K-Nearest Neighbor (SKKNN) classifier. The biopsy-proven annotated mammograms from the CBIS-DDSM dataset are used in this study. There were 6156 occurrences in the dataset with MLO and CC view of 1331 normal, 858 benign and 889 malignant mammograms. Findings: The experimental findings showed that the suggested model KMC-GF and SKKNN can accurately detect breast cancer at an early stage. The accuracy, sensitivity , specificity, AUC, precision, F1-measure for SKKNN was 92.56%, 93.8%, 92.75%, 95.2%, 93.93%, and 94.5% which are higher comparing single view features. Novelty: This technique could be employed in the medical field to diagnose breast cancer and also produce few false positive results. This method reduces the workload for radiologists while still providing reliable diagnostics without the need for expensive procedures or a lot of equipment.

Keywords: SKKNN, Adaptive K-means segmentation, Gabor filter, MLO and CC Mammogram, KMC-GF

References

  1. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Communications. 2021;41(11):1183–1194. Available from: https://doi.org/10.1002/cac2.12207
  2. Jebarani PE, Umadevi N, Dang H, Pomplun M. A Novel Hybrid K-Means and GMM Machine Learning Model for Breast Cancer Detection. IEEE Access. 2021;9:146153–146162. Available from: https://doi.org/10.1109/ACCESS.2021.3123425
  3. Wang Z, Li M, Wang H, Jiang H, Yao Y, Zhang H, et al. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access. 2019;7:105146–105158. Available from: https://doi.org/10.1109/ACCESS.2019.2892795
  4. Li H, Chen D, Nailon WH, Davies ME, Laurensonv D. A deep dual-path network for improved mammogram image processing. In: IEEE International Conference on Acoustics, Speech and Signal Processing. (pp. 1224-1228) IEEE. 2019.
  5. Kulkarni P. Fine Grained Classification of Mammographic Lesions using Pixel N-grams. Asian Journal For Convergence In Technology (AJCT). 2019. 2019;5(1):1–5. Available from: https://asianssr.org/index.php/ajct/article/view/734
  6. Yang Z, Cao Z, Zhang Y, Tang Y, Lin X, Ouyang R, et al. MommiNet-v2: Mammographic multi-view mass identification networks. Medical Image Analysis. 2021;73:1–11. Available from: https://doi.org/10.1016/j.media.2021.102204
  7. Sridevi V, Samath JA. A combined deep CNN-lasso regression feature fusion and classification of MLO and CC view mammogram image. International Journal of System Assurance Engineering and Management. 2024;15:553–563. Available from: https://doi.org/10.1007/s13198-023-01871-x
  8. Ibrahim AO, Ahmed A, Abdu A, Abd-Alaziz R, Alobeed MA, Saleh AY, et al. Classification of mammogram images using radial basis function neural network. In: Emerging Trends in Intelligent Computing and Informatics - Data Science, Intelligent Information Systems and Smart Computing, Advances in Intelligent Systems and Computing. (Vol. 1073, pp. 311-320) Springer..
  9. Vijayarajeswari R, Parthasarathy P, Vivekanandan S, Basha AA. Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement. 2019;146:800–805. Available from: https://doi.org/10.1016/j.measurement.2019.05.083
  10. Sridevi V, Samath JA. Design and implementation of transfer learned deep CNN with feature fusion for automated mammogram classification. International Journal of Health Sciences. 2022;6(S6):3033–3047. Available from: https://doi.org/10.53730/ijhs.v6nS6.10267
  11. Kayode AA, Akande NO, Adegun AA, Adebiy MO. An automated mammogram classification system using modified support vector machine. Medical Devices: Evidence and Research . 2019;12:275–284. Available from: https://doi.org/10.2147/MDER.S206973
  12. Arooj S, Atta-Ur-Rahman, Zubair M, Khan MF, KA, Khan MA, et al. Breast Cancer Detection and Classification Empowered With Transfer Learning. Frontiers in Public Health. 2022;10:1–18. Available from: https://doi.org/10.3389/fpubh.2022.924432
  13. Sridevi V, Samath JA. MLO and CC view of feature fusion and mammogram classification using deep convolution neural network. International Journal of Health Sciences. 2022;6(S7):5196–5207. Available from: https://doi.org/10.53730/ijhs.v6nS7.13106
  14. Dewangan KK, Dewangan DK, Sahu SP, Janghel R. Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimedia Tools and Applications. 2022;81:13935–13960. Available from: https://doi.org/10.1007/s11042-022-12385-2
  15. Alruwaili M, Gouda W. Automated Breast Cancer Detection Models Based on Transfer learning. Sensors. 2022;22(3):1–16. Available from: https://doi.org/10.3390/s22030876
  16. Alshammari MM, Almuhanna A, Alhiyafi J. Mammography Image-Based Diagnosis of Breast Cancer Using Machine Learning: A Pilot Study. Sensors . 2022;22(1):1–20. Available from: https://doi.org/10.3390/s22010203
  17. Mohapatra S, Muduly S, Mohanty S, Ravindra JVR, SNM. Evaluation of Deep Learning Models for Detecting Breast Cancer using Mammograms. Sustainable Operations and Computers. 2022;3:296–302. Available from: https://doi.org/10.1016/j.susoc.2022.06.001
  18. Sahu B, Mohanty SN, Rout SK. A Hybrid Approach for Breast Cancer Classification and Diagnosis. EAI Endorsed Transactions on Scalable Information Systems. 2019;6(20):1–8. Available from: https://dx.doi.org/10.4108/eai.19-12-2018.156086
  19. Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Thorax disease classification with attention guided convolutional neural network. Pattern Recognition Letters. 2020;131:38–45. Available from: https://dx.doi.org/10.1016/j.patrec.2019.11.040

Copyright

© 2024 Sridevi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.