• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 13, Pages: 1331-1339

Original Article

Cerium Oxide Nanoparticle-Papain Enzyme Bioconjugate: Synthesis, Characterization and Optical Absorption Study for Biomedical Applications

Received Date:31 January 2024, Accepted Date:07 March 2024, Published Date:22 March 2024

Abstract

Objective: Here, we synthesize cerium oxide nanoparticles, successfully characterize them, and study the interaction between enzymes and cerium oxide nanoparticles (CeO2 NPs) using a simple optical spectroscopic technique. Method: CeO2 was fabricated by chemical method. Characterizations were done using UV-Vis absorption spectra, FESEM images, and XRD data. For the biomolecular study, papain was used as a model enzyme. Two different concentrations of CeO2, namely a small concentration range (0.05810 to 0.40670 mM) and a large concentration range (0.58100 to 0.92961 mM), were taken to study the interaction with the papain. UV-Vis absorption spectra were recorded to study bioconjugate formation. Findings: The CeO2 NPs have an intense absorption peak at 352 nm and a band gap of 3.78 eV. The XRD pattern showed the unit cell is cubic with an average particle size of 41.36 nm. The binding of papain with CeO2 NPs resulted in a red shift in its absorption peak. The apparent association constant (Kapp) was calculated for the bioconjugate and found to be 0.747 × 103 M-1 for small concentrations and 0.278 × 103 M-1 for large concentrations. In large concentrations, aggregation occurs instead of corona formation. Novelty: To the best of our knowledge, this may be the first study of the interaction of papain enzyme with CeO2 NPs. This study contributes to the application of NPs in the field of biomedicine.

Keywords: Cerium oxide, Papaya proteinase (PP), Absorption spectra, Bioconjugate, Association constant

References

  1. Kallur M, Chandraprabha MN, Rajan HK, Khosla A, CM. Synthesis, Characterization of Cerium Oxide Nanoparticles and Evaluation of DNA Binding Interactions. ECS Transactions. 2022;107(1):15935–15943. Available from: https;//doi.org/10.1149/10701.15935ecst
  2. Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WIREs Nanomedicine and Nanobiotechnology. 2022;14(4):1–22. Available from: https://doi.org/10.1002/wnan.1788
  3. Tumkur PP, Gunasekaran NK, Lamani BR, Bayon NN, Prabhakaran K, Hall JC, et al. Cerium Oxide Nanoparticles: Synthesis and Characterization for Biosafe Applications. Nanomanufacturing. 2021;1(3):176–189. Available from: https://doi.org/10.3390/nanomanufacturing1030013
  4. Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, et al. Immobilization of papain: A review. International Journal of Biological Macromolecules. 2021;188:94–113. Available from: https://doi.org/10.1016/j.ijbiomac.2021.08.016
  5. Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, et al. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. International Journal of Biological Macromolecules. 2022;210:1–21. Available from: https://doi.org/10.1016/j.ijbiomac.2022.04.224
  6. Pansambal S, Oza R, Borgave S, Chauhan A, Bardapurkar P, SV, et al. Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Applied Nanoscience. 2023;13(9):6067–6092. Available from: https://doi.org/10.1007/s13204-022-02574-8
  7. Singh KR, Nayak V, Sarkar T, Singh RP. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Advances. 2020;10(45):27194–27214. Available from: https://doi.org/10.1039/D0RA04736H
  8. Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria‐Based Therapeutic Antioxidants for Biomedical Applications. Advanced Materials. 2024;36(10). Available from: https://doi.org/10.1002/adma.202210819
  9. Yadav N, Patel V, Mccourt L, Ruppert M, Miller M, Inerbaev T, et al. Tuning the enzyme-like activities of cerium oxide nanoparticles using a triethyl phosphite ligand. Biomaterials Science. 2022;10(12):3245–3258. Available from: https://doi.org/10.1039/D2BM00396A
  10. Yong JM, Fu L, Tang F, Yu P, Kuchel RP, Whitelock JM, et al. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells. ACS Biomaterials Science & Engineering. 2022;8(2):512–525. Available from: https://doi.org/10.1021/acsbiomaterials.1c01268
  11. Yadav N, Singh S. SOD mimetic cerium oxide nanorods protect human hepatocytes from oxidative stress. Emergent Materials. 2021;4(5):1305–1317. Available from: https://doi.org/10.1007/s42247-021-00220-7
  12. Zou H, Wang H, Xu B, Liang L, Shen L, Lin Q. Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment. Regenerative Biomaterials. 2022;9:1–13. Available from: https://doi.org/10.1093/rb/rbac070
  13. Casals G, Perramón M, Casals E, Portolés I, Fernández-Varo G, Morales-Ruiz M, et al. Cerium Oxide Nanoparticles: A New Therapeutic Tool in Liver Diseases. Antioxidants. 2021;10(5):1–23. Available from: https://doi.org/10.3390/antiox10050660
  14. Cheng G, Guo W, Han L, Chen E, Kong L, Wang L, et al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicology in Vitro. 2013;27(3):1082–1088. Available from: https://doi.org/10.1016/j.tiv.2013.02.005
  15. Wang M, He H, Liu D, Ma M, Zhang Y. Preparation, Characterization and Multiple Biological Properties of Peptide-Modified Cerium Oxide Nanoparticles. Biomolecules. 2022;12(9):1–16. Available from: https://doi.org/10.3390/biom12091277
  16. Coulter JB, III DPB. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. physica status solidi (b). 2018;255(3). Available from: https://doi.org/10.1002/pssb.201700393
  17. Mustapha S, Ndamitso MM, Abdulkareem AS, Tijani JO, Shuaib DT, Mohammed AK, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2019;10(4). Available from: https://iopscience.iop.org/article/10.1088/2043-6254/ab52f7

Copyright

© 2024 Mandal & Bhattacharjee. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.