• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 18, Pages: 1422-1433

Original Article

Compartmental model to estimate bile acid concentration in different clinical manifestation

Received Date:13 March 2021, Accepted Date:04 May 2021, Published Date:18 May 2021

Abstract

Objectives: To design a bio-compartmental model of enterohepatic circulation; and to estimate the concentration of bile acid in a different compartment and to understand the various pathological states connected to bile concentration. Methods: The model is based on parameters of volume of bile juice, the mass of bile acid, and the rate of bile secretion in all compartments. The model estimates various clinical manifestations of gallbladder and intestine describing the variable concentration of bile acid based on pathological state and application of mathematical simulation of fractional derivative (MATLAB). Findings: Compatibility of the model results considering pathological data allows us to estimate bile acid concentration in different pathological conditions, thus alters the physiology of enterohepatic circulation. Based on a pathological case the bile acid concentration was estimated and then the fractional derivative was applied to understand the severity of bile-related disorder with the help of mathematical simulation. The graphical results are obtained by applying fractional-order derivative (A Caputo sense) in different pathological cases depicts the varying bile acid concentration in the intestine, liver, and gallbladder comparative to a normal concentration. All findings clearly mentioned in section 4 (Results and Discussion). Novelty/Applications: Mathematical simulation of deposition of bile acid in conjugation with enterohepatic circulation, compartment model helps to understand the pathological disorder and etiology with the clinical symptoms of bile secretion.

Keywords: Intestine; Gallbladder; Liver; Enterohepatic circulation; Bile acid concentration; Mathematical modeling.

References

  1. Boyer JL. Bile formation and secretion. Comprehensive Physiology. 2013;3(3):1035–1078. Available from: https://doi.org/10.1002/cphy.c120027
  2. Esteller A. Physiology of bile secretion. World Journal of Gastroenterology. 2008;14(37):5641–5649. Available from: https://dx.doi.org/10.3748/wjg.14.5641
  3. Hofmann AF. The enterohepatic circulation of bile acids in mammals: form and functions. Frontiers in Bioscience. 2009;14:2584–2598. Available from: https://dx.doi.org/10.2741/3399
  4. Skouras T, Dodd S, Prasad Y, Rassam J, Morley N, Subramanian S. Brief report: length of ileal resection correlates with severity of bile acid malabsorption in Crohn’s disease. International Journal of Colorectal Disease. 2019;34(1):185–188. Available from: https://dx.doi.org/10.1007/s00384-018-3144-1
  5. Guiastrennec B, Sonne DP, Bergstrand M, Vilsbøll T, Knop FK, Karlsson MO. Model-Based Prediction of Plasma Concentration and Enterohepatic Circulation of Total Bile Acids in Humans. CPT: Pharmacometrics & Systems Pharmacology. 2018;7(9):603–612. Available from: https://dx.doi.org/10.1002/psp4.12325
  6. Chiang JYL, Ferrell JM. Bile Acid Metabolism in Liver Pathobiology. Gene Expression. 2018;18(2):71–87. Available from: https://dx.doi.org/10.3727/105221618x15156018385515
  7. Vlahcevic ZR, Heuman DM, Hylemon PB. Regulation of bile acid synthesis. Hepatology. 1991;13(3):590–600. Available from: https://dx.doi.org/10.1002/hep.1840130331
  8. Erpecum KJV, Berge-Henegouwen GPV. Gallstones: an intestinal disease? Gut. 1999;44(3):435–438. Available from: https://dx.doi.org/10.1136/gut.44.3.435
  9. Kasumova GG, Tabatabaie O, Najarian RM, Callery MP, Ng SC, Bullock AJ, et al. Surgical management of gallbladder cancer: simple versus extended cholecystectomy and the role of adjuvant therapy. Annals of surgery. 2017;266(4):625–631.
  10. Andrianello S, Marchegiani G, Malleo G, Pollini T, Bonamini D, Salvia R. Biliary fistula after pancreaticoduodenectomy: data from 1618 consecutive pancreaticoduodenectomies. HPB. 2017;19(3):264–269. Available from: https://dx.doi.org/10.1016/j.hpb.2016.11.011
  11. Materne R, Beers BEV, Gigot JF, Jamart J, Geubel A, Pringot J. Extrahepatic biliary obstruction: magnetic resonance imaging compared with endoscopic ultrasonography. Endoscopy. 2000;32(01):3–9.
  12. Franchi-Abella S, Gonzales E, Ackermann O, Branchereau S, Pariente D, Guérin F. Congenital portosystemic shunts: diagnosis and treatment. Abdominal Radiology. 2018;43(8):2023–2036. Available from: https://dx.doi.org/10.1007/s00261-018-1619-8
  13. Suchy FJ, Ananthanarayanan M. Bile salt excretory pump: biology and pathobiology. Journal of pediatric gastroenterology and nutrition. 2006;43(1):10–16.
  14. Żulpo M, Balbus J, Kuropka P, Kubica K. A model of gallbladder motility. Computers in Biology and Medicine. 2018;93:139–148. Available from: https://dx.doi.org/10.1016/j.compbiomed.2017.12.018
  15. Colak Y, Bozbey G, Erim T, Caklili OT, Ulasoglu C, Senates E, et al. Impaired Gallbladder Motility and Increased Gallbladder Wall Thickness in Patients with Nonalcoholic Fatty Liver Disease. Journal of Neurogastroenterology and Motility. 2016;22(3):470–476. Available from: https://dx.doi.org/10.5056/jnm15159
  16. Li S, Li C, Wang W. Bile acid signaling in renal water regulation. American Journal of Physiology-Renal Physiology. 2019;317(1):73–76.
  17. Lanzini A, Northfield TC. Bile acid therapy. Alimentary pharmacology & therapeutics. 1990;4(1):1–24.
  18. Khan MA, Atangana A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alexandria Engineering Journal. 2020;59(4):2379–2389. Available from: https://dx.doi.org/10.1016/j.aej.2020.02.033
  19. Crosignani A, Setchell KDR, Invernizzi P, Larghi A, Rodrigues CMP, Podda M. Clinical Pharmacokinetics of Therapeutic Bile Acids. Clinical Pharmacokinetics. 1996;30(5):333–358. Available from: https://dx.doi.org/10.2165/00003088-199630050-00002
  20. Grosell M, O'Donnell MJ, Wood CM. Hepatic versus gallbladder bile composition: in vivo transport physiology of the gallbladder in rainbow trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2000;278(6):R1674–R1684. Available from: https://dx.doi.org/10.1152/ajpregu.2000.278.6.r1674
  21. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology. 1991;14(3):551–566. Available from: https://dx.doi.org/10.1002/hep.1840140324
  22. Corbett CL, Bartholomew TC, Billing BH, Summerfield JA. Urinary excretion of bile acids in cholestasis: evidence for renal tubular secretion in man. Clinical science. 1979;61(6):773–780.
  23. Fatmawati MA, Bonyah E, Hammouch Z, Shaiful EM. A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics. 2020;5(4):2813–2855.
  24. Yeh CY, Chung-Davidson YW, Wang H, Li K, Li W. Intestinal synthesis and secretion of bile salts as an adaptation to developmental biliary atresia in the sea lamprey. Proceedings of the National Academy of Sciences. 2012;109(28):11419–11424. Available from: https://dx.doi.org/10.1073/pnas.1203008109
  25. Gurantz D, Hofmann AF. Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1984;247(6):G736–G748. Available from: https://dx.doi.org/10.1152/ajpgi.1984.247.6.g736
  26. Jazrawi RP, Pazzi P, Petroni ML, Prandini N, Paul C, Adam JA. Postprandial gallbladder motor function: Refilling and turnover of bile in health and in cholelithiasis. Gastroenterology. 1995;109(2):582–591. Available from: https://dx.doi.org/10.1016/0016-5085(95)90348-8
  27. Guiastrennec B, Sonne D, Hansen M, Bagger J, Lund A, Rehfeld J, et al. Mechanism‐Based Modeling of Gastric Emptying Rate and Gallbladder Emptying in Response to Caloric Intake. CPT: Pharmacometrics & Systems Pharmacology. 2016;5(12):692–700. Available from: https://dx.doi.org/10.1002/psp4.12152
  28. Khan MA, Hammouch Z, Baleanu D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Mathematical Modelling of Natural Phenomena. 2019;14(3):311. Available from: https://dx.doi.org/10.1051/mmnp/2018074

Copyright

© 2021 Kandula et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.