• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 17, Pages: 1338-1346

Original Article

Fermented Neem (Azadirachta indica) leaves-metal nanoparticles and their insecticidal properties against Bactrocera dorsalis (Hendel)

Received Date:14 April 2021, Accepted Date:29 April 2021, Published Date:12 May 2021


Objectives: To investigate the potential of nanoparticles synthesized from neem leaves in pest management for Bactrocera dorsalis. Methods: This study involves extracting the insecticidal properties of neem (Azadirachta indica) by fermenting air-dried leaves with rice wash. The crude fermented neem extract (FNE) was applied as a biopesticide against male B. dorsalis in an improvised olfactometer. The remaining crude extract was utilized in the green synthesis of silver nanoparticles (AgNP) and copper nanoparticles (CuNP). The insecticidal activities of FNE and the extracts with AgNP and CuNP were tested against B. dorsalis. Findings: The experimental treatments 100% FNE and 20% FNECuNP have the same effect as the positive control, causing the death of adult male fruit fly of 83.33% mortality rate after 24 h. The treatment 20% FNE-AgNP showed a higher mortality rate, 100%, after 24 h. Likewise, the results of the larvicidal activities infer that the most effective treatment with a mortality rate of 100% after 24-h exposure is the extract with silver nanoparticles. Moreover, the neem extract, FNE-AgNP, and FNE-CuNP exhibited ovicidal properties, suppressing the development of eggs into third instar larvae. Fermented neem extract can be used to formulate biopesticide enhanced with nanoparticles for controlling B. dorsalis. Novelty: This study showed that the fermented neem leaves extract using rice wash is effective in the green synthesis of silver and copper nanoparticles. The prepared biopesticide metal nanoparticles can be used in the management of B. dorsalis.

Keywords: Silver nanoparticles; Copper nanoparticles; Insecticidal; Bactrocera dorsalis; Azadirachta indica


  1. R.I V, L L, J.C P, K.M H. Male Annihilation, Past, Present, and Future. In: T S, N E, E J, J RF, R V., eds. Trapping and the detection, control, and regulation of tephritid fruit flies. (pp. 493-511) Dordrecht. Springer. 2014.
  2. Piñero JC, Mau RFL, Vargas RI. Managing Oriental Fruit Fly (Diptera: Tephritidae), With Spinosad-Based Protein Bait Sprays and Sanitation in Papaya Orchards in Hawaii. Journal of Economic Entomology. 2009;102(3):1123–1132. Available from: https://dx.doi.org/10.1603/029.102.0334
  3. John DS, Roger IV, Steven KS, Jo FA, Randall ST, Luc L, et al. Simulated field applications of insecticide soil drenches for control of tephritid fruit flies. Biopesticides International. 2014;10(2):136–142. Available from: https://www.researchgate.net/publication/274779864
  4. Pradhan S, Mailapalli DR. Nanopesticides for Pest Control. In: Sustainable Agriculture Reviews. (Vol. 40, pp. 43-74) Springer..
  5. Anandhi S, Saminathan VR, Yasotha P, Saravanan PT, Venugopal R. Nano-pesticides in pest management. Journal of Entomology and Zoology Studies. 2020;8(4):685–690.
  6. Narasimhamurthy K, Soumya K, Undayashankar CA, Srinivas C, Roshan A. Ramachandrappa Nirianjana Siddapura. Nanofertilizers and nanopesticides: Recent trends, future prospects in agriculture. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture. 2021;p. 281–330. Available from: https://doi.org/10.1016/B978-0-12-820092-6.00012-4
  7. Arnab D, Rituparna B, Ajeet K, Subho M. Targeted delivery of pesticides using biodegradable polymeric nanoparticles. New Delhi; India. Springer. 2014. 10.1007/978-81-322-1689-6
  8. Simonian AL, Good TA, Wang SS, Wild JR. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta. 2005;534(1):69–77. Available from: https://dx.doi.org/10.1016/j.aca.2004.06.056
  9. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT. Nano-particles-A recent approach to insect pest control. African Journal of Biotechnology. 2010;9(24):3489–3493. Available from: https://www.ajol.info/index.php/ajb/article/view/82345
  10. Ugochukwu BA. Medicinal properties of fractionated acetone/water neem Azadirachta indica leaf extract from Nigeria: a review. Nigerian Journal of Physiological Sciences. 2010;24(2):157–159. Available from: https://dx.doi.org/10.4314/njps.v24i2.52926
  11. Bigoniya P, Singh C, Srivastava B. Pharmacognostical and physico-chemical standardization of Syzygium cumini and Azadirachta indica seed. Asian Pacific Journal of Tropical Biomedicine. 2012;2(1):S290–S295. Available from: https://dx.doi.org/10.1016/s2221-1691(12)60176-2
  12. Babatunde DE, Otusemade GO, Efeovbokhan VE, Ojewumi ME, Bolade OP, Owoeye TF. Chemical composition of steam and solvent crude oil extracts from Azadirachta indica leaves. Chemical Data Collections. 2019;20:100208. Available from: https://dx.doi.org/10.1016/j.cdc.2019.100208
  13. Paul R, Prasad M, Sah NK. Anticancer biology ofAzadirachta indicaL (neem): A mini review. Cancer Biology & Therapy. 2011;12(6):467–476. Available from: https://dx.doi.org/10.4161/cbt.12.6.16850
  14. Kausik B, Ishita C, Ranajit KB, Uday B. Biological activities and medicinal properties of neem (Azadirachta indica) Current Science. 2002;10:1336–1345. Available from: https://www.jstor.org/stable/24106000
  15. Shanmugasundaram R, Jeyalakshmi T, Dutt MS, Murthy PB. Larvicidal activity of neem and karanja oil cakes against mosquito vectors, Culex quinquefasciatus (Say) Journal of Environmental Biology. 2007;29(1):43–45. Available from: https://pubmed.ncbi.nlm.nih.gov/18831329/
  16. Rajagopal K, Suryanarayanan TS. Isolation of endophytic fungi from leaves of neem (Azadirachta indica A. Juss.) Current Science. 2000;78(11):1375–1378. Available from: https://www.jstor.org/stable/24104047
  17. Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel G. The Endophytic Mycoflora of Bark, Leaf, and Stem Tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India) Microbial Ecology. 2007;54(1):119–125. Available from: https://dx.doi.org/10.1007/s00248-006-9179-9
  18. Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha L. Extraction, Isolation And Characterization Of Bioactive Compounds From Plants’ Extracts. African Journal of Traditional, Complementary and Alternative Medicines. 2011;8(1):1–10. Available from: https://dx.doi.org/10.4314/ajtcam.v8i1.60483
  19. Abbott WS. A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association. 1987;3(2):302–303. Available from: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8376553
  20. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) Journal of Pest Science. 2011;84(1):99–105. Available from: https://dx.doi.org/10.1007/s10340-010-0332-3
  21. Depetris-Chauvin A, Galagovsky D, Grosjean Y. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Frontiers in Ecology and Evolution. 2015;3:41. Available from: https://dx.doi.org/10.3389/fevo.2015.00041
  22. (Luntz) AJM, Nisbet AJ. Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil. 2000;29(4):615–632. doi: 10.1590/s0301-80592000000400001
  23. Kim H, Kirkhart C, Scott K. Long-range projection neurons in the taste circuit of Drosophila. eLife. 2017;6:1–24. Available from: https://dx.doi.org/10.7554/elife.23386
  24. Stocker RF. The Olfactory Pathway of Adult and Larval Drosophila. Annals of the New York Academy of Sciences. 2009;1170(1):482–486. Available from: https://dx.doi.org/10.1111/j.1749-6632.2009.03896.x
  25. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. Mechanism of Silver Nanoparticles Action on Insect Pigmentation Reveals Intervention of Copper Homeostasis. PLoS ONE. 2013;8(1):e53186. Available from: https://dx.doi.org/10.1371/journal.pone.0053186
  26. Robert GP, Aseel R, Thomas S, Tim T, Ralph H. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behavior Genetics. 2002;32(2):89–94. Available from: https://doi.org/10.1023/A:1015279221600
  27. Tolaymat TM, Badawy AME, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment. 2010;408(5):999–1006. Available from: https://dx.doi.org/10.1016/j.scitotenv.2009.11.003
  28. Mesfer SAG. The effect of static electric fields on Drosophila behaviour . University of Southampton thesis
  29. Thirunavukkarasu S, Rahuman A, Abdul R, Govindasamy M, Sampath B, Asokan J, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology research. 2011;108(3):693–702. Available from: 10.1007/s00436-010-2115-4
  30. Silva MA, Bezerra-Silva GCD, Vendramim JD, Mastrangelo T. Sublethal effect of neem extract on mediterranean fruit fly adults. Revista Brasileira de Fruticultura. 2013;35(1):93–101. Available from: https://dx.doi.org/10.1590/s0100-29452013000100012


© 2021 Paragas et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.