• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 19, Pages: 1525-1533

Original Article

Free Vibration Analysis of Multiphase Magneto-Electro-Elastic Composite Conical Shells

Received Date:17 February 2021, Accepted Date:13 May 2021, Published Date:26 May 2021


Objectives: In the present article, free vibration of multiphase Magneto-Electro-Elastic (MEE) conical shell having a uniform thickness is examined for Clamped-Free (C-F) boundary condition. Method: The study is carried out using a semi-analytical approach for different volume fractions (Vf ) 0, 0.2, 0.6 and 1.0 of BaTiO3 in BaTiO3-CoFe2O4 smart composite conical shell for three different semi-vertex angles 20o,35o and 50o. The piezoelectric (Pe) and piezomagnetic (Pm) phase on natural frequencies of MEE truncated conical shells are discussed for different circumferential modes. Findings: The parametric study indicates that natural frequency decrease with an increase in Vf of BaTiO3 in magnetoelectro-elastic truncated conical shells. Novelty: Studies on MEE constant thickness truncated conical shell using BaTiO3 and CoFe2O4 as (Pe) & (Pm) smart composite for clamped-free boundary condition to analyse the effect of the frequency with different semi-vertex angle and cone heights. Present commercial FEA software tools are limited to 2 coupling fields. In this research, coupling between 3 fields considered for MEE material. Hence, a computer code is developed to study the influence coupling between electric, elastic and magnetic fields, which can be used for any combinations of boundary conditions and volume fractions.

Keywords: MagnetoElectroElastic (MEE); axisymmetric constant thickness conical shell; Smart Composites; volume fraction; free vibrations; finite element method


  1. Buchanan GR. Free vibration of an infinite magneto-electro-elastic cylinder. Journal of Sound and Vibration. 2003;268:413–426. Available from: 10.1016/S0022-460X(03)00357-2
  2. Irie T, Yamada G, Kaneko Y. Natural frequencies of truncated conical shells. Journal of Sound and Vibration. 1984;92(3):447–453. Available from: https://doi.org/10.1016/0022-460X(84)90391-2
  3. Thambiratnam DP, Thevendran V. Optimum design of conical shells for free vibration. Computers & Structures. 1988;29(1):133–140. Available from: https://dx.doi.org/10.1016/0045-7949(88)90178-2
  4. Thambiratnam PD, Zhuge Y. Axisymmetric free vibration analysis of conical shells. Engineering Structure. 1991;15(2). Available from: https://doi.org/10.1016/0141-0296(93)90002-L
  5. Lam KY, Hua L. Vibration analysis of a rotating truncated circular conical shell. International Journal of Solids and Structures. 1997;34(17):2183–2197. Available from: https://dx.doi.org/10.1016/s0020-7683(96)00100-x
  6. Liew KM, Ng TY, Zhao X. Free vibration analysis of conical shells via the element-free kp-Ritz method. Journal of Sound and Vibration. 2005;281(3-5):627–645. Available from: https://dx.doi.org/10.1016/j.jsv.2004.01.005
  7. Annigeri AR, Ganesan N, Swarnamani S. Free vibrations of clamped–clamped magneto-electro-elastic cylindrical shells. Journal of Sound and Vibration. 2006;292(1-2):300–314. Available from: https://dx.doi.org/10.1016/j.jsv.2005.07.043
  8. Firouz-Abadi RD, Rahmanian M, Amabili M. Free Vibration of Moderately Thick Conical Shells Using a Higher Order Shear Deformable Theory. Journal of Vibration and Acoustics. 2014;136(5):1–8. Available from: https://dx.doi.org/10.1115/1.4027862
  9. Nejati M, Asanjarani A, Dimitri R, Tornabene F. Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences. 2017;130:383–398. Available from: https://dx.doi.org/10.1016/j.ijmecsci.2017.06.024
  10. Mouli BC, Kar VR, Ramji K, Rajesh M. Free vibration of functionally graded conical shell. Materials Today: Proceedings. 2018;5(6):14302–14308. Available from: https://dx.doi.org/10.1016/j.matpr.2018.03.012
  11. Wu C, Pang F. Free Vibration Characteristics of the Conical Shells Based on Precise Integration Transfer Matrix Method. Latin American Journal of Solids and Structures. 2018;15(1):e03. Available from: http://dx.doi.org/10.1590/1679-78253971
  12. Song Z, Cao Q, Dai Q. Free vibration of truncated conical shells with elastic boundary constraints and added mass. International Journal of Mechanical Sciences. 2019;155:286–294. Available from: https://dx.doi.org/10.1016/j.ijmecsci.2019.02.039
  13. Vinyas M, Sandeep A, Nguyen-Thoi T, Ebrahimi F, Duc D. A finite element–based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. Journal of Intelligent Material Systems and Structures. 2019;30(16):2478–2501. Available from: https://dx.doi.org/10.1177/1045389x19862386
  14. Vinyas M, Sunny KK, Harursampath D, Nguyen-Thoi T, Loja MAR. Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Composite Structures. 2019;226:111254. Available from: https://dx.doi.org/10.1016/j.compstruct.2019.111254
  15. Vinyas M. Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification. Archives of Computational Methods in Engineering. 2021;28(3):1205–1248. Available from: https://dx.doi.org/10.1007/s11831-020-09406-4
  16. Leissa AW. National Aeronautics and Space Administration Vibration of shell. 1973.
  17. Li H. Rotating Shell Dynamics. 2005.


© 2021 Srikantamurthy & Annigeri. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.