• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 22, Pages: 2305-2315

Original Article

Impact of Bi2O3 on the Structural, Optical, Radiation Shielding, and Dielectric Analysis of Lead Borosilicate Glasses Doped with TiO2

Received Date:16 January 2024, Accepted Date:22 February 2024, Published Date:30 May 2024

Abstract

Objective: The principal aim of this investigation was to assess the impact of bismuth oxide on the optical properties, radiation shielding characteristics, and dielectric behavior of lead borosilicate glasses doped with titanium oxide at a low concentration. Method: We intended to utilize the conventional rapid melt quenching method to produce glasses with the following chemical composition: 25 PbO+ 15 B2O3 + 0.1 TiO2 + (59.9-x) SiO2 : x Bi2O3(0≤x≤12). Findings: XRD and SEM analyses were used to confirm the samples' non-crystalline properties, while DTA investigations were used to evaluate the samples' ability to form glass. The numerous structural elements were identified through the utilization of FT–IR and Raman analyses. The optical characteristics of glasses are determined by optical absorption studies. The findings derived from optical absorption spectral analyses revealed a progressive increase in the concentration of octahedral Ti4+ ions with the mol% Bi2O3 concentration. In order to analyse the glasses' dielectric properties, an impudence analyser was employed. The results obtained from these inquiries indicate that glasses do contain Bi2O3 at concentrations lower than 12 mol% experience a progressive increase in dielectric constant values. Further investigation is conducted into the radiation shielding properties of the glasses. Novelty: The findings indicate that the values of the glasses' optical band gap, radiation shielding ability, dielectric constant, and thermal stability are all directly correlated with their Bi2O3 concentration.

Keywords: FT­IR, Raman, OBG, MAC, Activation Energy

References

  1. Pisarski WA, Kowalska K, Kuwik M, Pisarska J, Dorosz D, Kochanowicz M, et al. Enhanced mid-IR luminescence of Er3+ ions at 2.7 μm in TiO2-GeO2-BaO-Ga2O3 glasses. Journal of Luminescence. 2024;265. Available from: https://dx.doi.org/10.1016/j.jlumin.2023.120227
  2. Fong WL, Bashar K, Baki SO, Karim MKA, Sayyed MI, Mahdi MA, et al. Influence of Bi2O3 content on structural, optical and radiation shielding properties of transparent Bi2O3-Na2O-TiO2-ZnO-TeO2 glass ceramics. Radiation Physics and Chemistry. 2022;200:110289. doi: 10.1016/j.radphyschem.2022.110289
  3. Mahdy EA, Sahbal KM, Mabrouk M, Beherei HH, Abdel-Monem YK, . Enhancement of glass-ceramic performance by TiO2 doping: In vitro cell viability, proliferation, and differentiation. Ceramics International. 2021;47(5):6251–6261. Available from: https://doi.org/10.1016/j.ceramint.2020.10.203
  4. He P, Luo Z, Liang H, Liu X, Tong J, Zhou Z, et al. Study on the structure and optical properties of the Tb3+-doped SrO–MgO–SiO2–TiO2–B2O3 glasses. Optical Materials. 2023;144. Available from: https://doi.org/10.1016/j.optmat.2023.114349
  5. Deng L, Fu Z, Mingxing Z, Li H, Yao B, He J, et al. Crystallization, structure, and properties of TiO2-ZrO2 co-doped MgO-B2O3-Al2O3-SiO2 glass-ceramics. Journal of Non-Crystalline Solids. 2022;575. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2021.121217
  6. Li Y, Fu Z, Zheng K, Wang J, Sun X. Effect of TiO2 addition amount on BaO–CaO–Al2O3 -SiO2 glass-bonded Al2O3 ceramics. Ceramics International. 2023;49(15):25261–25268. Available from: https://dx.doi.org/10.1016/j.ceramint.2023.05.060
  7. Shankar J, Kumar AS, Raju P, Anjaiah J, Ali SM, Rani GN, et al. Synthesis, microstructure and ferroelectric properties of PbO-TiO2-B2O3 based glass ceramics. Materials Today: Proceedings. 2022;64(Part 1 ):585–589. Available from: https://dx.doi.org/10.1016/j.matpr.2022.05.120
  8. Jia H, Zhan L, Han L, Zhang X, Xie J, Li H, et al. Effects of TiO2 content and crystallization treatments on elastic modulus of alkali-free aluminosilicate glass. Journal of Solid State Chemistry. 2023;325. Available from: https://dx.doi.org/10.1016/j.jssc.2023.124177
  9. Alencar MVS, Bezerra GVP, Silva LD, Schneider JF, Pascual MJ, Cabral AA. Structure, Glass Stability and Crystallization Activation Energy of SrO-CaO-B2O3-SiO2 glasses doped with TiO2. Journal of Non-Crystalline Solids. 2021;554. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2020.120605
  10. Richter LJ, Beckmann CM, Ihlemann J. UV laser generated micro structured black surface on commercial TiO2-containing glass. Applied Surface Science. 2022;601. Available from: https://dx.doi.org/10.1016/j.apsusc.2022.154231
  11. Zalapa-Garibay MA, Reyes-López SY. Effect of NiO, ZrO2 and TiO2 on the formation of glass-ceramic cordierite in the MgO–Al2O3–SiO2–MoO3 system. Journal of Materials Research and Technology. 2024;28:3805–3824. Available from: https://dx.doi.org/10.1016/j.jmrt.2023.12.176
  12. Fong WL, Bashar KA, Baki SO, Karim MKA, Sayyed MI, Mahdi MA, et al. Influence of Bi2O3 content on structural, optical and radiation shielding properties of transparent Bi2O3-Na2O-TiO2-ZnO-TeO2 glass ceramics. Radiation Physics and Chemistry. 2022;200. Available from: https://dx.doi.org/10.1016/j.radphyschem.2022.110289
  13. Chen P, Cheng C, Li T, Wang Y, Wang C, Zhang L. Significantly improved dielectric properties of TiO2 ceramics through acceptor-doping and Ar/H2 annealing. Ceramics International. 2021;47(2):1551–1557. Available from: https://dx.doi.org/10.1016/j.ceramint.2020.08.268
  14. Zandona A, Patzig C, Rüdinger B, Hochrein O, Deubener J. TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses. Journal of Non-Crystalline Solids: X. 2019;2(2):1–9. Available from: https://dx.doi.org/10.1016/j.nocx.2019.100025
  15. Li H, Yin Z, Deng L, Wang S, Fu Z, Ma Y. Effect of SiO2/Al2O3 ratio on the structure and electrical properties of MgO–Al2O3–SiO2 glass-ceramics doped with TiO2. Materials Chemistry and Physics. 2020;256. Available from: https://dx.doi.org/10.1016/j.matchemphys.2020.123653
  16. El-Khayatt AM, Saudi HA, AlRowis NH. Synthesis and Characterization of Zinc-Lead-Phosphate Glasses Doped with Europium for Radiation Shielding. Sustainability. 2023;15(12):1–21. Available from: https://dx.doi.org/10.3390/su15129245
  17. Es-soufi H, Ouachouo L, Mahmoud KG, Sayyed MI, Essoussi H, Bih L. Effect of Bi2O3 on the Structural, Mechanical, and Radiation Gamma Shielding Properties of the Boro-Silica-Phosphate Glasses. Silicon. 2023;15(16):6945–6961. Available from: https://dx.doi.org/10.1007/s12633-023-02549-6
  18. Ramanujan CS, Alrowaili ZA, Sekhar KC, Alzahrani JS, Shareefuddin M, Haritha L, et al. Synthesis and Optimization of Bi2O3-B2O3-Cr2O3 Glass System for Structural, Optical, and Radiation Shielding Properties. Journal of Electronic Materials. 2023;52(10):6445–6459. Available from: https://dx.doi.org/10.1007/s11664-023-10613-5
  19. Alzahrani JS, Kavas T, Kurtulus R, Olarinoye IO, Al-Buriahi MS. Physical, structural, mechanical, and radiation shielding properties of the PbO–B2O3–Bi2O3–ZnO glass system. Journal of Materials Science: Materials in Electronics. 2021;32(14):18994–19009. Available from: https://dx.doi.org/10.1007/s10854-021-06414-3

Copyright

© 2024 Krishna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.