• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 270
• PDF 86

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 18, Pages: 1824-1827

Original Article

## Independence Number of Order Prime Graph

Received Date:25 February 2024, Accepted Date:28 February 2024, Published Date:25 April 2024

## Abstract

Objective: To explore the algebraic structures inherent in groups and their relationship to graph theory, particularly focusing on the process of converting a group into a graph. Method: Let be a group. The Order Prime Graph of is a graph with and two distinct vertices and are adjacent in if and only if In this paper, we characterize the structure of order prime graphs of some groups and also we find the independence number and clique number of the order prime graph. Finding: In the present article, we characterized the structure of order prime graphs of some groups and also we found the independence number and clique number of the order prime graph. Novelty: Introducing innovative methods for converting groups into graphs, departing from existing approaches, could be a key novelty. This might involve novel ways of encoding group elements as vertices and group operations as edges, potentially leveraging insights from other mathematical fields or computational techniques.

Keywords: Order Prime graph, Finite group, Clique number, Independence number, Prime number

## References

1. Abdollahi A, Akbari S, Maimani HR. Non-commuting graph of a group. Journal of Algebra. 2006;298(2):468–492. Available from: https://dx.doi.org/10.1016/j.jalgebra.2006.02.015
2. Sattanathan M, Kala R. Degree prime graph. Journal of Discrete Mathematical Sciences and Cryptography. 2009;12(2):167–173. Available from: https://dx.doi.org/10.1080/09720529.2009.10698226
3. Sattanathan M, RK. An Introduction to Order Prime Graph. International Journal of Contemporary Mathematical Sciences. 2009;4(10):467–474. Available from: https://www.researchgate.net/publication/237256546_An_Introduction_to_Order_Prime_Graph
4. Choosuwan P, Sangsawang P, Matwangsang C, ST, Sirisuk S. Generalized Order Divisor of Finite Groups. International Journal of Group Theory. 2024;13(1):31–45. Available from: https://ijgt.ui.ac.ir/article_27057_5895cfefa2ebac6c74cd05992ab30b25.pdf
5. Rehman SU, Baig AQ, Imran M, Khan ZU. Order divisor graphs of finite groups. Analele Universitatii "Ovidius" Constanta - Seria Matematica. 2018;26(3):29–40. Available from: https://dx.doi.org/10.2478/auom-2018-0031
6. Rehman SU, Imran M, Bibi S, Gull R. Generalized order divisor graphs associated with finite groups. Algebra Letters. 2022;2022:1–11. Available from: https://scik.org/index.php/abl/article/view/7630
7. Banerjee S, Adhikari A. Prime coprime graph of a finite group. Novi Sad Journal of Mathematics. 2022;52(2):41–59. Available from: https://dx.doi.org/10.30755/nsjom.11151
8. Hao S, Zhong G, Ma X. Notes on the Co-prime Order Graph of a Group. Proceedings of the Bulgarian Academy of Sciences. 2022;75(3):340–348. Available from: https://dx.doi.org/10.7546/crabs.2022.03.03