• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 19, Pages: 1923-1934

Original Article

Modified Detour Index of Hamiltonian Connected (Laceable) Graphs

Received Date:01 April 2024, Accepted Date:29 April 2024, Published Date:03 May 2024


Objectives: To explore the bounds for the modified detour index of certain Hamiltonian connected and laceable graphs. Methods: The Wiener index , detour index and the modified detour index are used. Findings: Here we introduce the modified detour index and its least upper bounds for Hamiltonian connected and laceable graphs, by formulating the constraints. Novelty: Based on the modified detour index, the bounds for some special graphs such as: Hamiltonian connected graphs of two families of convex polytopes ( and ) and Hamiltonian laceable graphs of spider graph ( ) and image graph of prism graph ( ) are encountered here.

Keywords: Hamiltonian graph, Hamiltonian connected, Hamiltonian laceable, Wiener index, detour index


  1. Gopika S, Anil L, Aiswarya P, Rajendran S. On the Detour Based Indices. Mathematical Statistician and Engineering Applications. 2022;71(3s):951–966. Available from: https://www.philstat.org/special_issue/index.php/MSEA/article/view/271
  2. Prabhu S, Nisha YS, Arulperumjothi M, Jeba DSR, Manimozhi V. On detour index of cycloparaphenylene and polyphenylene molecular structures. Scientific Reports. 2021;11(1):1–14. Available from: https://dx.doi.org/10.1038/s41598-021-94765-6
  3. Abdullah HO, Omar ZI. Edge restricted detour index of some graphs. Journal of Discrete Mathematical Sciences and Cryptography. 2020;23(4):861–877. Available from: https://dx.doi.org/10.1080/09720529.2019.1624062
  4. Vijay JS, Roy S. Computation of Wiener Descriptor for Melamine Cyanuric Acid Structure. Polycyclic Aromatic Compounds. 2024;44(2):1057–1071. Available from: https://dx.doi.org/10.1080/10406638.2023.2186441
  5. Hudry O, Lobstein A. On the Complexity of Determining Whether there is a Unique Hamiltonian Cycle or Path. WSEAS TRANSACTIONS on MATHEMATICS. 2022;21:433–446. Available from: https://dx.doi.org/10.37394/23206.2022.21.51
  6. Byers A, Hallas J, Olejniczak D, Zayed M, Zhang P. Hamiltonian Walks and Hamiltonian-Connected 3-Path Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing. 2020;113:213–231. Available from: https://combinatorialpress.com/jcmcc/vol113/
  7. Devi MRS, Girisha A. Hamiltonian Laceability in Book Graphs. In: 1st International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS 2021) , Journal of Physics: Conference Series. (Vol. 2161, pp. 1-9) IOP Publishing. 2022.
  8. Krishna S, Shenoy LN. Study on Hamiltonian laceability properties of Cayley graphs. In: 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021, AIP Conference Proceedimgs. (Vol. 2516, Issue 1) AIP Publishing. 2022.
  9. Hayat S, Khan A, Khan S, Liu JB. Hamilton Connectivity of Convex Polytopes with Applications to Their Detour Index. Complexity. 2021;2021:1–23. doi: 10.1155/2021/6684784
  10. Hayat S, Malik MYH, Ahmad A, Khan S, Yousafzai F, Hasni R. On Hamilton-Connectivity and Detour Index of Certain Families of Convex Polytopes. Mathematical Problems in Engineering. 2021;2021:1–18. doi: 10.1155/2021/5553216
  11. Sigarreta S, Sigarreta S, Cruz-Suárez H. Topological indices for random spider trees. Main Group Metal Chemistry. 2023;46(1). doi: 10.1515/mgmc-2022-0025
  12. Gomathi P, Murali R. Laceability properties in the image graph of Prism graphs. TWMS Journal of Applied and Engineering Mathematics. 2023;13(4):1396–1407. Available from: https://jaem.isikun.edu.tr/web/images/articles/vol.13.no.4/12.pdf


© 2024 Nagarathnamma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.