• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 4, Pages: 266-276

Original Article

Performance Evaluation of Fusion Based Efficient Algorithm for Facial Expression Recognition

Received Date:19 September 2022, Accepted Date:15 December 2022, Published Date:28 January 2023

Abstract

Objectives: To develop face expression recognition system using JAFFE database and to evaluate the performance of the face expression recognition models. Methods: This study used the FER model based on modified-HoG (Histogram of oriented gradient), LBP (Local Binary Patterns) and Fast Key point detector and BRIEF descriptor (FKBD) to extract the significant features of JAFFE dataset. The features extracted using HoG, LBP and FKBD techniques form a feature vector. Then, the fusion of all the features is carried out at the feature level. The multiclass SVM and KNN classifiers are used to recognize the facial expressions, effectively. Findings: In this work, an effort is made to develop a robust FER model using JAFFE database. It is recorded that, based on the experimental results, the proposed model suits better with a performance rate of 98.26% for SVM and 96.51% for KNN, when compared with the different state-of-the-art methods. Novelty: Many FER models have been developed and adopted for enhancing their quality and to extract the facial features using transform and frequency domains. It is observed that, maximum approaches are based on generating the texture features. The fusion at the feature level using modified HoG, LBP and FKBD is performed and the SVM model is more compatible when compared with other classifiers and it supports one-to-one and one-to-many comparisons’ technique.
Keywords: Face Expression Recognition; Local Binary Pattern; Emotions; Nearest Neighbor; Histogram of Gradients

References

  1. Hyeon-Jung KS, Hong. A Study on Emotion Recognition Method and its Application using Face Image. IEEE Conference on Information and Communication Technology Convergence. 2017;p. 370–372. Available from: https://doi.org/10.1109/ICTC.2017.8191005
  2. Kołodziej M, Majkowski A, Rak R, Tarnowski P, Pielaszkiewicz T. Analysis of facial features for the use of emotion recognition. IEEE International Conference of Computational Problems of Electrical Engineering. 2018;p. 1–4. Available from: https://doi.org/10.1109/CPEE.2018.8507137
  3. Vibha V, Salunke CG, Patil. A New Approach for Automatic Face Emotion Recognition and Classification Based on Deep Networks. IEEE Conference on Computing, Communication, Control and Automation. 2018;p. 370–372. Available from: https://doi.org/10.1109/ICCUBEA.2017.8463785
  4. Ferreira C, R. On the role of multimodal learning in the recognition of sign language. International Journal of Multimedia Tools and Applications. 2019;7(8):10035–10056. Available from: https://doi.org/10.1007/s11042-018-6565-5
  5. Keshari T, Palaniswamy S. Emotion Recognition Using Feature-level Fusion of Facial Expressions and Body Gestures. 2019 International Conference on Communication and Electronics Systems (ICCES). 2019;p. 1–5. Available from: https://doi.org/10.1109/ICCES45898.2019.9002175
  6. Madupu RK, Madupu RK, Yarra V. Automatic Human Emotion Recognition System using Facial Expressions with Convolution Neural Network. IEEE International Conference of Electronics, Communication and Aerospace Technology. 2020;p. 1179–1183. Available from: https://doi.org/10.1109/ICECA49313.2020.9297483
  7. Joesph C, Rajeswari A, Premalatha B, Balapriya C. Implementation of physiological signal based emotion recognition algorithm. 2020 IEEE 36th International Conference on Data Engineering (ICDE). 2020;p. 2075–2079. Available from: https://doi.org/10.1109/ICDE48307.2020.9153878
  8. Sunil S, Harakannanavar, Prashanth C, Raja SRKB, Patil. Face Recognition based on SWT, DCT and LTP. Springer International Conference on Integrated Intelligent Computing, Communication and Security. 2019. Available from: https://doi.org/10.1007/978-981-10-8797-4_57
  9. Robin MMH, Rahman AMU, Taief QM, Nahar. Improvement of Face and Eye Detection Performance by Using Multi-task Cascaded Convolutional Networks. IEEE region 10 Symposium. 2020;p. 977–980. Available from: https://doi.org/10.1109/TENSYMP50017.2020.9230756
  10. Jaiswal A, Raju AK, Deb S. Facial Emotion Detection Using Deep Learning. 2020 International Conference for Emerging Technology (INCET). 2020;p. 1–5. Available from: https://doi.org/10.1109/INCET49848.2020.9154121
  11. Nasri MA, Hmani MA, Mtibaa A, Petrovska-Delacretaz D, Slima MB, Hamida AB. Face Emotion Recognition From Static Image Based on Convolution Neural Networks. 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). 2020;p. 1–6. Available from: https://doi.org/10.1109/ATSIP49331.2020.9231537
  12. Nguyen N. Global-local attention for emotion recognition. International Journal of Neural Computing & Applications. 2021(6):1–8. Available from: https://doi.org/10.1007/s00521-021-06778-x
  13. 2AMAA, Bilal KH. Review on Emotion Recognition Using Facial Expressions. European Journal of Electrical Engineering and Computer Science. 2021;(3) 1–4. Available from: https://doi.org/10.24018/ejece.2021.5.3.322
  14. Pranav E, Kamal S, Chandran C, Supriya MH. Facial Emotion Recognition Using Deep Convolutional Neural Network. 2020. Available from: https://doi.org/10.1109/ICACCS48705.2020.9074302
  15. Aguiñaga AR, Hernandez DE, Quezada A. Emotion Recognition by Correlating Facial Expressions and EEG Analysis. International Journal of Applied Science. 2021;(1) 1–10. Available from: https://doi.org/10.3390/app11156987
  16. Costache A, Popescu D, Ichim L. Facial Expression Detection by Combining Deep Learning Neural Networks. 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE). 2021;p. 1–5. Available from: https://doi.org/10.1109/ATEE52255.2021.9425340
  17. Sunil S, Harakannanavar, Prashanth CR, Raja KB. Performance Evaluation of Face Recognition based on the Fusion of Bit- Plane and Binary Image Compression Techniques using Euclidean Distance Classifier. International Journal of Intelligent Engineering and Systems. 2018;11(6):52–64. Available from: https://doi.org/10.22266/ijies2018.1231.06
  18. Sun L, Dai J, Shen X. Facial emotion recognition based on LDA and Facial Landmark Detection. 2nd International Conference on Artificial Intelligence and Education (ICAIE). 2021;p. 64–67. Available from: https://doi.org/10.1109/ICAIE53562.2021.00020

Copyright

© 2023 Harakannanavar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.