• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 23, Pages: 1953-1960

Original Article

Recognition of Tablet using Blister Strip for Visually Impaired using SIFT Algorithm

Received Date:07 May 2021, Accepted Date:19 June 2021, Published Date:09 July 2021


Objectives: To create a tablet recognition system that recognizes and gives an audio output of the name of the tablet so that the visually impaired person may recognize it. Methods: In this, to create a user friendly system, such that a blind person does not require the help of another person to use it. These systems give medical assistive instrument to take the drug at the accurate time as per the doctor prescription and removes dependency on others for the visually challenged people. Various models were technologically advanced to compact with misidentification of remedies but are incompetent of formative exact pill picked by the person. Findings: The name of the medicine is obtained from the image. Then the name of the medicine is converted from text to speech using Google text to speech (gTTS). The proposed system will be helpful for visually challenged people, SQLite Database management system has been used along with Scale Invariant Feature Transform algorithm (SIFT) to identify and pronounce local features in the image. The image of the medicine given by the user is matched with the images in the database. Novelty: Developed a user-friendly voice based tablet recognition system for visually impaired people and this system is fast and accurate.


SIFT algorithm, medicine identification, visually impaired people, gTTS, Tablet Recognition


  1. Suntronsuk S, Ratanotayanon S. Pill image binarization for detecting text imprints13th International Joint Conference on Computer Science and Software Engineering (JCSSE)2016;p. 16. Available from: 10.1109/JCSSE.2016.7748859
  2. Proma TP, Hossan MZ, Amin MA. Medicine Recognition from Colors and Text. In: Proceedings of the 2019 3rd International Conference on Graphics and Signal Processing (ICGSP '19). (pp. 39-43Association for Computing Machinery. 2019.
  3. Zanjal SV, Talmale GR. Medicine Reminder and Monitoring System for Secure Health Using IOTProcedia Computer Science2016;78:471476. Available from: https://dx.doi.org/10.1016/j.procs.2016.02.090
  4. Chang WJ, Chen LB, Hsu CH, Lin CP, Yang TC. A Deep Learning-Based Intelligent Medicine Recognition System for Chronic PatientsIEEE Access2019;7:4444144458. Available from: https://dx.doi.org/10.1109/access.2019.2908843
  5. Hsu WJCYXYJHCZYZSJKTHYCH, Chen LB, Chen MC. A Deep Learning Based Wearable Medicines Recognition System for Visually Impaired People2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)2019;p. 207208.
  6. JY, ZC, SiK, Yang J. Accurate system for automatic pill recognition using imprint informationIET Image Processing2015;9. Available from: 10.1049/iet-ipr.2014.1007
  7. Huynh TH, Nguyen TS. A new imprinted tablet recognition algorithm using polar transform and neural networks2015 International Conference on Advanced Technologies for Communications (ATC)2015;p. 3843. Available from: 10.1109/ATC.2015.7388356
  8. Kang S, Jang GJ, Lee M. Lighting Variability Correction for Pill Identification2018 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)2018;p. 206212. Available from: 10.1109/ICCE-ASIA.2018.8552143
  9. Ou YY, Tsai AC, Wang JF, Lin J. Automatic Drug Pills Detection based on Convolution Neural Network2018 International Conference on Orange Technologies (ICOT)2018;p. 14. Available from: 10.1109/ICOT.2018.8705849
  10. Wang Y, Ribera J, Liu C, Yarlagadda S, Zhu F. Pill Recognition Using Minimal Labeled Data. In: IEEE Third International Conference on Multimedia Big Data (BigMM). (pp. 346-353) 2017. 10.1109/BigMM.2017.61
  11. Mate GS, Godambe H, Maske M, Gomare A. Visual Product Identification for Blind PeopleInternational Journal of Advanced Science and Technology2020;29(9s):75387543.
  12. Lee S, Jung S, Song H. CNN-Based Drug Recognition and Braille Embosser System for the BlindJournal of Computing Science and Engineering2018;12(4):149156. Available from: https://dx.doi.org/10.5626/jcse.2018.12.4.149
  13. Chang WJ, Chen LB, Hsu CH, Chen JH, Yang TC, Lin CP. MedGlasses: A Wearable Smart-Glasses-Based Drug Pill Recognition System Using Deep Learning for Visually Impaired Chronic PatientsIEEE Access2020;8:1701317024. Available from: https://dx.doi.org/10.1109/access.2020.2967400
  14. Kesh S, Ananthanagu U. Text Recognition and Medicine Identification by Visually Impaired PeopleInternational Journal Of Engineering Research & Technology (IJERT) ICPCN - 20172017;5.
  15. Mateus A, Neto V, Jo˜ao WM, Souza PPD, Filho R, De AW, et al. CoforDes: An Invariant Feature Extractor for the Drug Pill Identification2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)2018;p. 3035. Available from: 10.1109/CBMS.2018.00013.
  16. Palenychka R, Lakhssassi A, Palenychka M. Verification of Medication Dispensing Using the Attentive Computer Vision Approach2018 IEEE International Symposium on Circuits and Systems (ISCAS)2018;p. 14. Available from: 10.1109/ISCAS.2018.8351202
  17. Shashidhar R, Abhilash S, Sahana V, Alok NA, Roopa M. Iot cloud: In health monitoring systemInternational Journal of Scientific and Technology Research2020;9(1).
  18. Ou YY, Tsai AC, Zhou XP, Wang JF. Automatic drug pills detectionIET Computer2020(1):917.


© 2021 Shashidhar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.