• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 19, Pages: 948-955

Original Article

Semi-supervised Clustering Based Feature Selection with Multiobjective Genomic Search Class-based Classification Method for NIDPS

Received Date:04 February 2022, Accepted Date:13 April 2022, Published Date:27 May 2022

Abstract

Objectives: The purpose of semi-supervised clustering-based feature selection with the multiobjective genomic search class based classification process is to extract the intrusion features from the content of the unbalanced class field and structures in the dataset. Method: A class-based taxonomy with Multiobjective Genomic Search Method (SCMGSM) is semi-supervised Clustering Based Feature Selection designed to avoid inappropriate classification and to generate class based efficient authenticity for detecting intrusions. The proposed SCMGSM operates on a cluster class basis to reduce the overhead distribution by utilizing the subset classifications based on labelling process. For cluster class based feature selection there is not necessary to retain the interconnected features, so the proposed taxonomy to detect the attack features for each subset classification improves the performance. SCMGSM protects the data source using the potential blocking and minimizes the hassle of unauthorized users from changing features. Findings: The experiments focused on a set of data to identify and classify features based on each class. The proposed SCMGSM handles enhanced classification accuracy with 5.37% normal class completeness, reduces false positive rate to 2.78%, improves detection rate to 6.75% and reduces the backup issue by 10.65% compared to overhead classification. Novelty: SCMGSM operates based on multi objective genomic search based cluster class taxonomy and offers high degree of accuracy, classification and low false-positive rating compared to the detection of exploitation, Fuzzers, Generic and Renaissances attack classes with in a specific subset or a group of features.

Keywords: Classification; Cluster; Feature selection; Intrusion detection; Network attacks

References

  1. Ahmad Z, Khan AS, Shiang CW, Abdullah J, Ahmad F. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies. 2021;32(1). Available from: https://dx.doi.org/10.1002/ett.4150
  2. Chandrashekar G, Sahin F. A survey on feature selection methods. Computers and Electrical Engineering. 2014;40(1):16–28. Available from: https://dx.doi.org/10.1016/j.compeleceng.2013.11.024
  3. Cheng J, Li M, Tang X, Sheng VS, Liu Y, Guo W. Flow Correlation Degree Optimization Driven Random Forest for Detecting DDoS Attacks in Cloud Computing. Security and Communication Networks. 2018;2018:1–14. Available from: https://dx.doi.org/10.1155/2018/6459326
  4. Zhao C, Xin Y, Li X, Yang Y, Chen Y. A Heterogeneous Ensemble Learning Framework for Spam Detection in Social Networks with Imbalanced Data. Applied Sciences. 2020;10(3):936. Available from: https://dx.doi.org/10.3390/app10030936
  5. Diro AA, Chilamkurti N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems. 2018;82:761–768. Available from: https://dx.doi.org/10.1016/j.future.2017.08.043
  6. Kocher G, Kumar G. Analysis of Machine Learning Algorithms with Feature Selection for Intrusion Detection using UNSW-NB15 Dataset. International Journal of Network Security & Its Applications. 2021;13(1):21–31. Available from: https://dx.doi.org/10.5121/ijnsa.2021.13102
  7. Janarthanam S, Sukumaran S, Shanthakumar M. Active Salient Component Classifier System on LocalFeatures for Image Retrieval. Indian Journal of Science and Technology. 2017;10(26):1–9. doi: 10.17485/ijst/2017/v10i26/112405
  8. Liu H, Zhou M, Liu Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA Journal of Automatica Sinica. 2019;6(3):703–715. Available from: https://dx.doi.org/10.1109/jas.2019.1911447
  9. Saxena AK, Sinha S, Shukla P. A review on intrusion detection system in mobile ad-hoc network. 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE). 2017;p. 549–554.
  10. Torabi M, Udzir NI, Abdullah MT, Yaakob R. A Review on Feature Selection and Ensemble Techniques for Intrusion Detection System. International Journal of Advanced Computer Science and Applications. 2021;12(5):538–553. Available from: https://dx.doi.org/10.14569/ijacsa.2021.0120566
  11. Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Al-Nemrat A, Venkatraman S. Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access. 2019;7:41525–41550. Available from: https://dx.doi.org/10.1109/access.2019.2895334
  12. Wang Y, Wang YX, Singh A. A Theoretical Analysis of Noisy Sparse Subspace Clustering on Dimensionality-Reduced Data. IEEE Transactions on Information Theory. 2019;65(2):685–706. Available from: https://dx.doi.org/10.1109/tit.2018.2879912
  13. Zhang Q, Li R, Chu T. Kernel semi-supervised graph embedding model for multimodal and mixmodal data. Science China Information Sciences. 2020;63(1):119–204. Available from: https://dx.doi.org/10.1007/s11432-018-9535-9

Copyright

© 2022 Poobalan & Pannirselvam. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.