• P-ISSN 0974-6846 E-ISSN 0974-5645 # Indian Journal of Science and Technology

## Article • VIEWS 646
• PDF 72

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 36, Pages: 2826-2831

Original Article

## The Study of the Energy Conditions of the Universe and Unique Solutions of the Einstein’s Field Equations in the Lights of the Theory of General Relativity

Received Date:19 May 2021, Accepted Date:15 September 2021, Published Date:03 November 2021

## Abstract

Objectives: To study the energy conditions of the universe and to find unique solutions of the Einstein’s field equations. Methods: A mathematical formulation developed to study the energy conditions of the universe and a new way of unique solutions of the famous Einstein’s field equations with appropriate theoretical and mathematical analysis of the theory of general relativity. Findings: With the reference to the power series expansion of the mass function ˆM(u; r) developed by Wang and Wu (1999), we have derived two new ways to solve Einstein’s field equations by introducing new values of n as n=2 and n=-2. Novelty: With the reference to the power series expansion of the mass function ˆM(u; r), we have found new ways to solve Einstein’s field equations with n=2 and n=-2. And we have derived a total of four new solutions of the Einstein’s field equations. And the solutions are very innovative and different from (i) Schwarzschild solution and (ii) de Sitter solution. The solutions own (i) the first solution with the line element in the equation (11) describes a stationary solution. It has coordinate singularity at r = (2m)􀀀1 . (ii) The second solution with the line element in the equation (14) will be reduced to those Schwarzschild black holes when m=0 with singularities at r=2M. Also, it will be that dark energy when M=0 with singularities at r = (2m)􀀀1 . (iii) The third solution with the line element in the equation (17) describes a stationary solution. It has coordinate singularity at r = (2m)13 (iv) The fourth solution with the line element in the equation (20) describes a stationary solution. It has coordinate singularity at r = (2m)13.

Keywords: The Mass Function; Schwarzschild Solution; Einstein’s Field Equation; The Theory of General Relativity; Space - time Curvature

## References

1. Bousso R. The cosmological constant. General Relativity and Gravitation. 2008;40:607–637. Available from: https://dx.doi.org/10.1007/s10714-007-0557-5
2. Cai RG, Ji JY, Soh KS. Action and entropy of black holes in spacetimes with a cosmological constant. Classical and Quantum Gravity. 1998;15(9):2783–2793. Available from: https://dx.doi.org/10.1088/0264-9381/15/9/023
3. Chandrasekhar S. The Mathematical Theory of Black Holes. (pp. 5-26) Springer Netherlands. 1984.
4. Hawking SW, Ellis GFR. The Large Scale Structure of Space-Time. Cambridge University Press. 1973.
5. Ibohal N. Rotating metrics admitting non-perfect fluids. General Relativity and Gravitation. 2005;37(1):19–51. Available from: https://dx.doi.org/10.1007/s10714-005-0002-6
6. Ibohal N, Ishwarchandra N, Singh KY. Non-vacuum conformally flat space-times: dark energy. Astrophysics and Space Science. 2011;335(2):581–591. Available from: https://dx.doi.org/10.1007/s10509-011-0767-x
7. Mallett RL. Radiating Vaidya metric imbedded in de Sitter space. Physical Review D. 1985;31(2):416–417. Available from: https://dx.doi.org/10.1103/physrevd.31.416
8. Mallett R. Pion interferometry of quark - gluon plasma. Physical Review D. 33:1314. Available from: https://doi.org/10.1103/PhysRevD.33.1314
9. Newman E, Penrose R. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics. 1962;3(3):566–578. Available from: https://dx.doi.org/10.1063/1.1724257
10. IBOHAL N. Non – stationary de Sitter cosmological models. International Journal of Modern Physics D. 2009;18(05):853–863. Available from: https://dx.doi.org/10.1142/s0218271809014807
11. Ibohal N, Dorendro L. Non – stationary rotating black holes: Entropy and Hawking’s radiation. International Journal of Modern Physics D. 2005;14(08):1373–1412. Available from: https://dx.doi.org/10.1142/s0218271805007127
12. Ibohal N. On the variable – charged black holes embedded into de Sitter space: Hawking’s radiation. International Journal of Modern Physics D. 2005;14(06):973–994. Available from: https://dx.doi.org/10.1142/s0218271805007188
13. Ovalle J, Contreras E, Stuchlik Z. Kerr–de Sitter black hole revisited. Physical Review D. 2021;103(8):84016. Available from: https://dx.doi.org/10.1103/physrevd.103.084016
14. Wang A, Wu Y. Generalized Vaidya Solutions. General Relativity and Quantum Cosmology. 1999;31(1):107–114. Available from: https://dx.doi.org/10.1023/a:1018819521971  Article Metrics