• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 13, Pages: 1423-1434

Original Article

Virtual machine optimization to achieve energy efficient optimum resource utilization in cloud data center

Received Date:09 April 2020, Accepted Date:23 April 2020, Published Date:25 May 2020


Objectives: Cloud offers multiple benefits through its data center-based services. The whole world uses these services that are hosted by physical machines. Millions of virtual machines get an optimized utilization of hardware to utilize these physical machines. The unbalanced distribution of virtual machines to physical machines offers an in-efficient utilization of data center hardware that will also lead to more carbon emission and harm the environment as well. Methods/material: A learning function is needed to offer energy efficiency in the cloud data center through VM optimization through its optimal allocation to physical machines. Therefore, an optimal VM placement and migration algorithm is a challenge that is addressed in this paper to reach an efficient energy optimization and resource utilization level. Finding/Novelty: The proposed algorithm is led by a learning function that takes into account the available number of physical machines, number of virtual machines, incoming requests and decides to run an optimal number of physical machines to obtain energy efficiency level for the cloud data center by migrating the virtual machines (VMs).

Keywords: Datacenter; Cloud computing; Energy efficiency; VM placement; VM migration; Green Cloud


  1. Laszewski V, Diaz G, Wang J, Fox F, GC. Comparison of multiple cloud frameworks. IEEE. p. 734–741.
  2. Wang L, Khan SU. Review of performance metrics for green data centers: a taxonomy study. The journal of supercomputing. 2013;63(3):639–656.
  3. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, Rose CAD. Performance evaluation of container-based virtualization for high performance computing environments. Parallel, Distributed and Network-Based Processing (PDP). 2013;p. 233–240.
  4. Mishra SK, Puthal D, Sahoo B, Jayaraman PP, Jun S, Zomaya AY, et al. Energy-efficient VM-placement in cloud data center. Sustainable Computing: Informatics and Systems. 2018;20:48–55. doi: 10.1016/j.suscom.2018.01.002
  5. Zakarya M, Gillam L. Energy efficient computing, clusters, grids and clouds: A taxonomy and survey. Sustainable Computing: Informatics and Systems. 2017;14:13–33. doi: 10.1016/j.suscom.2017.03.002
  6. Liu XF, Zhan ZH, Deng JD, Li Y, Gu T, Zhang J. An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE transactions on evolutionary computation. 2016;22(1):113–128.
  7. Kansal NJ, Chana I. Energy-aware Virtual Machine Migration for Cloud Computing - A Firefly Optimization Approach. Journal of Grid Computing. 2016;14(2):327–345. doi: 10.1007/s10723-016-9364-0
  8. Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HSH, Li Y. Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Computing Surveys (CSUR). 2015;47(4):63.
  9. Agarwal D, Jain S. Efficient optimal algorithm of task scheduling in cloud computing environment. arXiv preprint. 2014;p. 1404.2076.
  10. Alapati S, Kumar P, Palani GS, Ravindran R, Sadasivam SK. U.S. Patent No. 8,914,515. 2014.
  11. Belady C, Rawson A, Pfleuger J, Cader T. Energy efficient grid data center power efficiency metrics: PUE and DCIE. 2008.
  12. Beloglazov SM, Beloglazov GS. Electrochemical Hydrogen in Metals - Can we Effectively Control this Harm? Solid State Phenomena. 2014;225:1–6. doi: 10.4028/www.scientific.net/ssp.225.1
  13. Bertran R, Becerra Y, Carrera D, Beltran V, Gonzalez M, Martorell X, et al. Accurate Energy Accounting for Shared Virtualized Environments using PMC-based Power Modeling Techniques.
  14. Chen K, Hu C, Zhang X, Zheng K, Chen Y. Cloud Computing. IEEE Network. 2011;p. 4.
  15. Rabkin I, Stoicaand M, Zaharia. UC Berkeley Reliable Adaptive Distributed Systems Laboratory Above the Clouds: A Berkeley View of Cloud Computing. In: Tech Report. 2009.


© 2020 Panhwar, Khuhro, Mazhar, Liang, Bilal, Qadir. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.