
Abstract
Objectives: To disassemble design information into parts assets to solve the problem of software production method and
to reduce duplicate development costs due to domain changes. Methods/Statistical Analysis: To solve this, the study tries
to create parts asset for reusing domain design information in the design process that is independent to the development
environment. Findings: Also in the design process, predesigned design information to apply reuse of parts assets and the
reuse of this architecture level that can accommodate this is difficult. Therefore to reuse design information in the design
process, there needs to be abstracted architecture information platform independent from development environment. Also
it needs to be based on well-designed architecture that can support design of application domain. Therefore the study used
a DMI structure that can formally express the design information of architecture level platform and application domain.
Therefore the study defined a method of creating component assets of design information to store architecture design
designed by designer in DMI as parts assets. Improvements/Applications: Thereby it was made possible that design
information of designer is configured as PLE asset in the extractive method and also it was made possible to synthesize
and reuse.

Decomposition of Reusable Architecture Asset
Hanyong Choi1, Sungho Sim2*

1Major of Computer Engineering, Shinhan University, Korea; hychoi@shinhan.ac.kr
2Department of Liberal Education, Semyung University, Korea; shshim@semyung.ac.kr

Keywords: Asset, Architecture, Component, DMI, PLE, Reuse

1.  Introduction
Reuse and automated production of software has been
very difficult to satisfy various demands1. Also effective
development method to solve this has been continuously
sought after and there are many researches for resolv-
ing these problems about software system reuse and
automated production2,3. Also rather than the demand
of reuse of code in the process of system development,
design information reuse of the process of abstract design
process has increased. Code reuse increased the problem
of low rate of reuse in readability and dependency on
development environment.

To solve this, the study tries to create parts asset for
reusing domain design information in the design process
that is independent to the development environment.
However in the design process, there is need for parts
needed in the architecture and application domain of
domain that is the target of design. In the end, well defined
and structured design information that can be reused by
new designers is not provided and also there is no support

for environment where provided design information can
be synthesized to expand design information4,5. Also in
the design process, synthesizing predesigned design infor-
mation to apply reuse of parts assets and the reuse of this
architecture level that can accommodate this is difficult.
Therefore to reuse design information in the design pro-
cess, there needs to be abstracted architecture information
platform independent from development environment.
Also it needs to be based on well-designed architecture
that can support design of application domain6.

Therefore the study used a DMI structure that can
formally express the design information of architecture
level platform and application domain6-8. DMI stores
design information by disassembling into parts assets in
the design process of high abstraction level and to enable
synthesis of this, meta model was expressed using XMI.
Therefore design information is stored as parts assets
expressed as formalized meta model using XMI and it
was made so that this can be synthesized and the design
information reused to design. Also DMI structure enables
design that is reusable and platform based architecture

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(46), DOI: 10.17485/ijst/2016/v9i46/107184, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Decomposition of Reusable Architecture Asset

Indian Journal of Science and Technology2 Vol 9 (46) | December 2016 | www.indjst.org

software product line. Also it is an adequate method for
a domain that needs to frequently and flexibly respond to
similar and new requirements between new requirements
nearly suggested between users. Proactive method is a
method of analyzing, designing, and implementing a com-
plete software product line to support all ranges predicted
to be needed for future products and when S/W Product
Line Asset is developed, it can minimize time and effort
needed in developing a product adequate for the mar-
ket but it dusty characteristics of requiring long analysis
and design time for software product line as well as high
costs and time expenditure. Because this method requires
much time and high costs, it is inadequate for cases where
it exceeds the allowable range, and it is adequate for large
corporations that have plenty of capital. It is adequate for
a stable domain with a well defined predicted require-
ment about the necessary product. Extractive method
is a method of analyzing and extracting similarities and
differences in a system product previously developed
into a software product line and it is a method of extract-
ing information from data such as previous source code,
design, and domain analysis. Because compared to pro-
active method it requires less cost and time, effective
software reuse is possible but it dusty characteristics of
not being adequate for cases when it is difficult to find
similarities and differences between previously developed
system. It is useful when it is possible to reuse the previ-
ous product or system and it is a useful method there are
many similarities and consistency in differences between
systems.

2.2  DMI
As expressed in Figure 1, DMI system structure is designed
into three layers, Design Layer, Mapping Layer, and
Infra Layer. Design layer is a layer that expresses design
information based on UML and expresses stored infor-
mation and infra layer is a layer that stores architecture
and component information made into component with
XML. Also, mapping layer which is the middle layer got
exchanges information between design layers and stored
design information is layers that converts XML informa-
tion and expresses UML, as does the role of searching and
managing components, and creating code. In the mapping
layer, modules that models design structure expressed
with UML and services for storing meta-models that
compose the design structure of infra layer provided.
Also it is composed of a code creation module that cre-
ates XML code by mapping stored meta-models on code

level. In production method, based on the problem of
formalizing previous design information and reusing and
platform, extractive method PLE structure that can solve
problems of software design was chosen. Therefore the
study, based on DMI structure, architecture level design
is done in the design process and Also design informa-
tion is a reusable part asset independent from platform
that is reusable, considering reasonability and assembly,
architecture components can be refined and stored, and
part asset is flexible according to the design purpose of
designer and independent parts synthesis is possible.

2.  Background

2.1  PLE
To increase productivity of software, component parts are
produced and assembled. However there are difficulties in
maintenance for adapting to various platform changes and
increasing productivity or in cases where there is need for
reproduction. The most effective method for this has been
continuously required and the method to solve this prob-
lem about Salter reuse and automated production method
is Product Line Engineering methodology9-11. PLE is
largely composed of two stages, domain engineering that
creates product assets by analyzing similarities and dif-
ferences and application engineering that creates certain
products that the customer wants using PLA. Domain
engineering is analyzing the similarities and differences
of products included in a certain domain to make a prod-
uct-line asset, and it is composed of architecture design
and component design. In architecture design, broad and
wide design decision is made and in component design,
narrow design decision is made. In component design,
considering reasonability and assembly, architecture com-
ponent is defined and for the product-line, the planned
product must be able to be assembled by reusable asset
component.

PLE methods can be divided into reactive method,
proactive method, and extractive method. Reactive
method is a method of gradually expanding previous soft-
ware product line and a new product as needed or if new
requirements occur for the current product. With low cost,
software product line expansion is possible and while it is
possible to flexibly respond to new requirements, it has
the characteristics of being difficult to apply when there
are almost no similarities between new requirements and
if many parts are variable. Is adequate for when it is dif-
ficult to predict requirements for new products within the

Hanyong Choi, Sungho Sim

Indian Journal of Science and Technology 3Vol 9 (46) | December 2016 | www.indjst.org

Figure 1.  Meta Model Structure.

<XMI xmi.version="2.1">
#HEADER#// Header
#CONTENT#// Content
#EXTENSIONS#// Extensions
</XMI>

// Header
<XMI.header>
<XMI.documentation>
<XMI.exporter>DMI</XMI.exporter>
<XMI.documentation>
<XMI.metamodel xmi.name="UML" xmi.version="2.1"/>
</XMI.header>

// Content
<XMI.content>
<Model xmi.id="#ID#">
<xmi.name>#ARCHITECTURE_NAME#</xmi.name>
<ownedElement>
[repeat CLASS]
#CLASS#
[/repeat CLASS]
[repeat ASSOCIATION]
#ASSOCIATION#
[/repeat ASSOCIATION]
</ownedElement>
</Model>
</XMI.content>
<Class xmi.id="#ID#">
<xmi.name>#CLASS_NAME#</xmi.name>
<feature>
[repeat OPERATION]
#OPERATION#
[/repeat OPERATION]
</feature>
</Class>

<Operation xmi.id="#ID#">
<xmi.name>#OPER_NAME#</xmi.name>
<visibility xmi.value="#VISIBILITY#"/>
</Operation>

<Association xmi.idref="#ID#">
<xmi.name>#ASSOC_NAME#</xmi.name>
<connection>
:
</connection>
</Association>

			 // Extensions

Decomposition of Reusable Architecture Asset

Indian Journal of Science and Technology4 Vol 9 (46) | December 2016 | www.indjst.org

creation template. Designers authenticate divided into
component designer and architecture designer and com-
ponent designer registers service components and limited
to registered service components they received authority
to edit and delete. Registered service components sup-
port facet search that has facet lists classified by previous
component search words and classification by purpose
and evaluation. To create an architecture design structure
where reuse independent from certain tools and plat-
forms as possible, certification from architecture designer
is received and when registering design information, the
structure is modeled with UML and configuration infor-
mation is stored in the product line asset. Then, a UML
based editor that can visually model design structures like
these is supported. To reuse architecture structure in the
future, configuration information stored in the database
is mapped on a code creation template composed of XMI
spec to create and store as an XML code.

3. � Expression of Design
Information

The study used meta-model to formalize and express
design information structure independent from the main
environment as shown in Figure 1. Four meta-data, XMI
(XML Metadata Interchange) was used to express meta-
models for design information.

For design information, design was done using meta
models, architecture and expansion meta-models. The
first model is a meta-model to express the architecture
for managing as formalized asset and the second model
is an expansion meta-model to express to component for
servicing according to the characteristics of the applica-
tion domain of the designer. Architecture meta-model
represents provision as standard design information of
formalized domain area and it is expanded combining the
service component of the user and this domain architec-
ture. To express the design information of the formalized
architecture, XMI was used as seen in the next figure to
define meta-model. (Figure 1)

Also as seen in Figure 2, for meta-models for express-
ing reused and expanded architecture, meta-models that
expressed pre-defined architectures were used to include
architecture information and relevant information to
enable expression of a new location domain, domain
architecture to define meta-model expressed with XMI.
The <Header> part records the type and XMI informa-
tion of meta-model. (Figure 2)

Figure 2.  Domain Architecture Structure.

<XMI xmi.version="2.1">
#HEADER#

#CONTENT#
#EXTENSIONS#

</XMI>
<XMI.documentation>

<XMI.exporter>DMI</XMI.exporter>
<XMI.documentation>

<XMI.metamodel xmi.name="UML" xmi.
version="2.1"/>
</XMI.header>
<XMI.content>

<Model xmi.id="#ID#">
<xmi.name>#DOMAIN_ARCHITECTURE_

NAME#</xmi.name>
<ownedElement>

[repeat ARCHITECTURE]
ARCHITECTURE

[/repeat ARCHITECTURE]
[repeat ASSOCIATION]

#ASSOCIATION#
[/repeat ASSOCIATION]

</ownedElement>
</Model>

</XMI.content>
< ARCHITECTURE xmi.id="#ID#">

<xmi.name># ARCHITECTURE _NAME#</xmi.
name>

</ ARCHITECTURE >
<Association xmi.idref="#ID#">

<xmi.name>#ASSOC_NAME#</xmi.name>
<connection>

<feature>
#class#

</feature>
</connection>
</Association>

<Class xmi.id="#ID#">
<xmi.name>#CLASS_NAME#</xmi.name>

</Class>

The <Content> part records the XMI information that
has the actual architecture meta-model information and
finally, the <Extension> part is composed of parts to express
expanded information of meta-model. Therefore according
to the grammar to compose meta-model of the architecture
assembled with component, architecture again, is composed

Hanyong Choi, Sungho Sim

Indian Journal of Science and Technology 5Vol 9 (46) | December 2016 | www.indjst.org

of components and sets of relationships and each component
is again, composed of class and sets of relationships. Like
this, design architecture about service domain, previous
asset is utilized to compose new domain architecture.

4. � Decomposition of Design
Information

4.1  Decomposition Structure of MetaModel
To define architecture structure, XMI meta-model
was used and to decompose the designed architecture,
operator and the calculation method for decomposition
calculation was defined in follow Figure. XMI decomposi-
tion calculation has the calculation function of removing
elements composing metadata in metadata. (Figure 3)

4.2  Decomposition of MetaModel
Meta-data was composed so that architecture could be
stored as asset by decomposing metadata combined into
reusable asset in metadata model of the synthesized archi-
tecture. Here, the process of decomposing metadata, as
seen in Figure 4, a method of separating one data element
by one within metadata is used. Here, in the decomposition
process, the architecture to be decomposed is selected and
architecture ID and element ID is obtained. (Figure 4)

Then with decomposition calculation, architecture ID
and element ID are decomposed and in content domain,
metadata received from decomposition calculation is
decomposed. Architecture name and metadata of ID sep-
arated in this process is decomposed and the metadata
about the decomposed element of architecture is decom-
posed to give new architecture name and ID. (Figure 5)

Figure 3.  Decomposite Architecture.

XMI.decomposite
<!ELEMENT XMI.decomposite ANY>
<!ATTLIST XMI.decomposite
		 %XMI.element.att;
		 %XMI.link.att;
		 xmi.position CDATA "–1">
XMI.replace
<!ELEMENT XMI.replace ANY>
<!ATTLIST XMI.replace
		 %XMI.element.att;
		 %XMI.link.att;
		 xmi.position CDATA "–1">

1: select architecture for decomposition;
2: if (interface) {
3: get architectures-ID, elements-ID;
4: decomposite metadata of architecture-ID, ele-
ments-ID;
5: decomposite metadata of architecture-name in con-
tent area;
6: decomposite metadata of architecture-element in
content area;
7: create new metadata of architecture-name, architec-
ture-ID;
8: }
9: else
10: can't decomposite this architecture;

Figure 4.  Decomposition Procedure.

Figure 5.  XMI Decomposition.

XMI.decomposite

<XMI.content>
<XMI.differencehref="original">
[repeat architecture]
<XMI.decompositehref="original/ architecture-ID>
<XMI.decomposite
xmi.id="#ID#" xmi.name="#ARCHITECTURE_NAME#"/>
<XMI.decompositehref="original/association-ID>
<XMI.decompositexmi.idref="#ID#"
xmi.name="#ASSOC_NAME#"/>
<XMI.decompositehref="original/Class-ID>
<XMI.decomposite
xmi.id="#ID#" xmi.name=#CLASS_NAME#"/>
[/repeat architecture]
<XMI.replacehref="original/Model/>
<Model
xmi.id="#New_ID#" xmi.name="#New_Architecture_
Name#"/>
</XMI.difference>
</XMI.content>
<ARCHITECTURE xmi.id="#ID#">
<xmi.name>#ARCHITECTURE_NAME#</xmi.name>
</ ARCHITECTURE >
<Association xmi.idref="#ID#">
<xmi.name>#ASSOC_NAME#</xmi.name>
<connection>
<feature>
#class#
</feature>
</connection>
</Association>
<Class xmi.id="#ID#">
<xmi.name>#CLASS_NAME#</xmi.name>
</Class>

Decomposition of Reusable Architecture Asset

Indian Journal of Science and Technology6 Vol 9 (46) | December 2016 | www.indjst.org

architecture as parts assets, cohesion of design information
can be strengthened. Also as size of systems increase and
complexities increase, by applying domain architecture,
cohesion can be strengthened and by strengthening
organization, organization fit for the purpose of system
design can be obtained. This can be seen as an effect
that can be obtained from acquiring reusability in
assembly when reusing PLE parts assets based on domain
engineering and strengthening of organization by parts
assets refined from architecture component.

6.  References
  1.	 Dao TM, Kang KC. Mapping Features to Reusable

Components: A Problem Frames-Based Approach. Proc.
14th Int’,l Conf. Software Product Lines: Going Beyond.
2010; p. 377-92.

  2.	 Larsen G. Model-Driven Development: Assets and Reuse.
IBM Systems Journal. 2006; 45(3):541-53.

  3.	 Bosch J. Super-Imposition: A Component Adaptation
Technique. Information and Software Technology. 1999;
41(5):257-73.

  4.	 Kastner AS, Lengauer CC. Language-Independent and
Automated Software Composition. The Feature House
Experience. Software Engineering IEEE Transaction. 2011;
39(1):63-79.

  5.	 Esmail A, Ali G. A New Architecture for Enterprise
Resource Planning Systems Based on a Combination of
Event-based Software Architecture and Service-oriented
Architecture. Indian Journal of Science and Technology.
2015 Jan; 8(2):108-19.

  6.	 Batory D, Lofaso B. Smaragdakis. JTS: Tools for
Implementing Domain-Specific Languages. Proceedings of
the 5th International Conference on Software Reuse. 1998;
p. 143–53.

  7.	 Choi H, Sim S. A Study on Software Development method
based on DMI. International Conference on System in
Medicine and Biology. 2015; 2(1):359-60.

  8.	 Apel S, Kolesnikov S, Liebig J, Kastner C, Kuhlemann M,
Leich T. Access Control in Feature-Oriented Programming.
Science of Computer Programming. 2012; 77(3):174-87.

  9.	 Pohl K, Bockle G, Linden FJVD. Springer: Software Product
Line Engineering: Foundations, Principles and Techniques.
2005.

10.	 Thompson V, Heimdahl MPE. Structuring Product Family
Requirements for N-Dimensional and Hierarchical Product
Lines. Requirements Engineering. 2003; 8(1):42-54.

11.	 Altintas NI, Dogru CS, Oguztuzun AHH. Modeling Product
Line Software Assets Using Domain-Specific Kits. Software
Engineering, IEEE. 2011; 38(6):1376-402.

In order to decompose architecture according to XMI.
decomposite calculation, architecture is selected using
<XMI.decompositehref=”architecture“> and to obtain
pattern to be decomposed and relevant information in
XMI.decomposite calculation, each architecture is classi-
fied by xmi.id value and it is divided into elements and
architecture. Using meta-model, the elements of archi-
tecture that are trying to decompose by repeating XMI.
decomposite calculation are decomposed. Like Figure
5, architecture-ID and association-ID information is
obtained and meta-model information is decomposed
on XMI meta-model of architecture, then from the meta-
data with expanded architecture, the architecture can
be decomposed. Here, a new architecture name is given
by <XMI.replace> population and name of element is
changed. The architecture being decomposed within
meta-model has registered the name and ID of architec-
ture given from content domain so this decomposed, and
the decomposed architecture and relevant information is
decomposed together.

5.  Conclusions
The study conducted an evaluation on six systems to check
the changes in complexities and completion in design infor-
mation for when designing at the class level and designing
based on domain architecture by using decomposed and
stored parts assets. In the four design information cohe-
sion, domain design information asset of DMI was used
design based on design information architecture. Here,
DMI based on parts asset is applied and when the target
system is designed, because of design information uses
UML in the class level and it can be seen that there is
higher cohesion and designing reusing parts assets.

Also when reusing parts asset to design based on
domain architecture, design complexity comparatively
reduced compared to when designing at the class
level. Therefore DMI asset design method is stronger
organizational measurement of cohesion in respect to the
complexity of the system. Each system can be seen that the
complexity of the results obtained by applying the higher
of organization domain architecture having a strong
cohesion, because reusable asset increased abstracted
designing level in systems. Therefore to set the optimal
number of classes and relation according to design
purpose when designing system, based on previous
designed experience, using optimal obstructed domain

