
Abstract
Objectives: To modify and implement color based mean shift object detection and tracking algorithm utilizing both the
parallel and sequential capabilities of Xilinx ZYNQ ZC-702 SoC in order to speed up tracking. Method/ Statistical Analysis:
The parallel and sequential processing capabilities of Field Programmable Logic Array (FPGA) and Processing System (PS)
respectively are utilized in order to have a standalone system that can be faster, reliable and efficient while tracking the object
in real time. Operations such as reading and writing video, grabbing kernel from frame and mean shift vector computation
are sequential in nature and are best suited for processing system where as the operations parallel in nature are best fit for
FPGA and may include estimation of histogram, computation of weights and estimation of weighted histogram. Executing
them in parallel helps in reducing the machine cycles and enhances the fps. Findings: The high computational power of
the algorithm is met by collective use of hardware and software while keeping the resources available on FPGA in check.
The modified mean shift tracking method helps in exploiting the parallel computation capability of the FPGA. The paper
compares the results with various techniques implemented on different embedded boards and the frame processing rate
is much better with proposed FPGA implementation of modified mean shift tracking algorithm. Further, the window size
can be varied without affecting fps. Application/Improvements: The frame rate achieved by using both hardware and
software simultaneously is considerably higher than achieved with earlier implementations.

Improved FPGA Implementation of Real Time
Modified Mean Shift Tracking Algorithm

Rajesh Rohilla* and Rajiv Kapoor

Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India;
rajesh@dce.ac.in, rajiv@dce.ac.in

Keywords: Hardware/Software, Hardware Implementation (FPGA), Mean Shift, Real Time

1.  Introduction
Object tracking is the process of locating a moving object
(or multiple objects) over time using a camera. Various
algorithms have been proposed to achieve the objective
with applications ranging from face detection, character
recognition, visual position and tracking to aerial target
location and identification etc. Visual tracking algorithms
are computation intensive and many of these algorithms
are less suitable for real time applications. Some of these
algorithms are discussed in1-4.

Though many of the algorithms have already been
implemented on personal computer and embedded
boards which may include anything from Digital Signal
Processing (DSP) boards, Graphical Processing Unit
(GPU), to Application Specific Integrated Devices (ASIC),
and Field Programmable Gated Arrays (FPGA); yet the

combination of the two (processor’s sequential nature and
embedded board’s parallel nature) will be more practical.
Combining the two spectrums will not only yield bet-
ter results but will also be a standalone system that can
cater to the real time application of the vision algorithms.
Further, the resources required for the resource hogging
and highly computational algorithms will be easily met.
Many of the previously proposed techniques have been
either done on sequential machines or on the hardware.
Although, few have implemented using both but they
have used higher resources with less fps. Contrary to this,
our implementation achieves higher fps while keeping the
options open for future expansion of the application.

The objective of the paper is to implement colour
based mean shift object detection algorithm utilizing
both the parallel and sequential capabilities of Xilinx
ZYNQ ZC-702 SoC. FPGA can be configured to the

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(39), DOI: 10.17485/ijst/2016/v9i39/97339, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Improved FPGA Implementation of Real Time Modified Mean Shift Tracking Algorithm

Indian Journal of Science and Technology2 Vol 9 (39) | October 2016 | www.indjst.org

required hardware to compute the task that may be paral-
lel in nature where as the dedicated processor present on
the SoC can process the task sequential in nature which
on the other hand may not be parallelised easily. Not
only the dedicated Processor eliminates the need of soft
processor implemented using Programmable Logic on
FPGA, it can also perform many arithmetic calculations
faster as compared to the soft processor especially involv-
ing FLoating OPerations (FLOPs). Along with this, the
resources taken to implement soft processor Intellectual
Property (IP) are reduced which allows the designer to
build an IP that may be resource hogging or the designer
can also implement multiple IP simultaneously. Mean
shift tracking algorithm in1 is highly computational and
resource consuming algorithm. In our implementation of
the algorithm on FPGA, the grabbing of two consecutive
frames from the video, formation of window on both the
frames and computation of mean shift vector is done by
RISC processor. On the other hand, making of the histo-
grams, division and other arithmetic calculations to yield
weighted histogram is performed by the hardware burnt
on FPGA. This enables us to meet the available resources
on FPGA and also allows us to achieve higher frames per
second (fps).

Mean shift object detection is a non-parametric fea-
ture based algorithm that finds the displacement of an
object in two consecutive frames by computing mean
shift vector which essentially represents the displace-
ment of the object in the second frame. The algorithm
explained in1 extracts the window from each frame and
computes the histogram of each window. The two his-
tograms are then used to find the weighted histogram
which when convolved with the second window yields
mean shift vector.

Implementing Mean shift tracking algorithm has
been a tough challenge considering the computation
power required while keeping it real time. Due to the
high complexity of general purpose processors, sequen-
tial nature of Digital signal processors and higher power
consumption of Graphical Processing Unit, they all
do not serve well for the purpose. But the flexibility to
reconfigure and extract the parallelism of FPGA has
made it much more suitable to vision applications. The
basic structure of FPGA and also the problems faced
while executing the vision algorithms on the same is
described in detail in5. Keeping in with FPGA6 present
a soft processor based architecture configured on it. It is
capable of running mean shift tracking algorithm with

two colour components in real-time at 25 fps in case of
PAL and 30 fps in case of NTSC. But the soft processor
essentially behaves as a sequential processor and thus
the parallel capabilities of FPGA are not fully utilized.
The mean-shift algorithm is implemented in7 to utilize
the advanced parallelism of FPGA EP1C6 of Altera Co
and processed real-time PAL video of 720*576 at 25 fps
for mobile robot application. The fps observed is nearly
same but7 essentially use the parallel nature of FPGA8
proposed the system which incorporated XC2V8000-
4CFF1152 FPGA mentioning 56. 38 fps while tracking
multiple objects which is twice the fps observed by6 and7
however, to detect the object particle filter is used which
consumes more resources and slows down the fps. This is
further supported by operation time of 0. 0167s observed
by9 where the particle filter was implemented on FPGA
to track the object. In10 FPGA-based particles filter that
takes advantage of evolutionary computation in order to
estimate motion patterns is presented. The evolutionary
algorithm, which has been included inside the re-sam-
pling stage, mitigates the known sample impoverishment
phenomenon, very common in particle-filtering systems.
In addition, a hybrid mutation technique using two dif-
ferent mutation operators, each of them with a specific
purpose, is used in order to enhance estimation results
and make a more robust system. However, it takes high
implementation time if we want higher particle numbers.
In11 Kalman filter has been implemented on ALTERA
Cyclone II for tracking and can process 25 frames per
second engaging 45% resources of Cyclone II. In12 Xilinx
Virtex-4 SX FPGA is used to process 25 frames per-
second at a low resolution 128*128 pixels monochrome
image. In12 moving vehicles have been extracted from
real-time camera images for the evaluation of traffic
parameters, such as the number of vehicles, their direc-
tion of movement and their approximate speed, using
low power hardware of a sensor network node. But the
problem of low fps still persists. Along with this, the low
resolution of images is a hindrance to its real time applica-
tions. Thus techniques used for implementation of vision
algorithms on FPGA for real time applications either
were not exploiting the parallel nature of FPGA (as in the
case of soft processor) or were using lower solution video
as in9 or were having low fps. In13 the parallel nature of
FPGA was exploited and combined it with the sequential
nature of processor to achieve higher fps with resolution
of 360*288. It is proved by the fact that13 achieved fps of
833 by employing colour based mean shift on Spartan 3E

Rajesh Rohilla and Rajiv Kapoor

Indian Journal of Science and Technology 3Vol 9 (39) | October 2016 | www.indjst.org

using hardware configured on FPGA and soft processor
simultaneously. He further showed the reduction in the
amount of the resources required to achieve the objec-
tive. The main strategy thus is to explore parallelism of
FPGA along with the sequential nature of processors to
speed up the performance.

Our design uses both the sequential nature of
processor and parallel nature of FPGA. The algorithm is
implemented on Xilinx ZYNQ ZC-702 SoC which has a
dedicated RISC processor unlike soft processor used by13.
The objective is to implement the operations that consume
high resources on dedicated processor which processes
data faster than soft processor.

The paper is organized as follows: Section 2 discusses
the design approach followed by processor and hardware
implementation in section 3. Section 4 compares the per-
formance with the previous implementations on FPGA.
Finally, Section 5 discusses the experimental results and
the paper is concluded in Section 6.

2.  Design Approach
The Xilinx ZYNQ ZC-702 SoC is broadly classified into
Processing Section (PS) and Programmable Logic (PL).
Processing section consists of a dedicated sequential
processor ARM Cortex A-9 to perform the software
operations while the user custom designed hardware can
be configured on PL. Using PS alone will decrease the
speed while preferring only PL for vision algorithm may
be resource hogging. Thus to implement algorithm fast
and efficiently, the design on the used SoC is carefully
divided between PS and PL to consume low resources
while making sure to get higher speed.

Video used during our implementation has a frame
resolution of 320*240 while window /kernel size used
can be varied for better results. Window size used during
implementation is 20*20. The mean shift vector is com-
puted after 5 mean shift iterations instead of 20 used by13
resulting in higher fps. Along with high fps, the resources
are overcome by reducing the histogram bins from 256 to
16. However, the reduced histogram bins did not affect the
results and provided satisfactory outcomes. Along with
this, the multiplication operations performed to obtain
mean shift vector is done on PS rather than on PL which
may have not only consumed higher resources but would
have been slower than the dedicated multiplier available
on PS. Figure 1 shows the design overview of the partition
of operations between PS and PL.

3.  Implementation

3.1  Processing Section
PS is best at performing sequential task faster than FPGA/
PL and exploiting the sequential nature of PS will not only
save a lot of operation time but the resources utilized are
also less. Operations like reading video, grabbing frame
from video, extracting candidate or target kernel from
the captured frame and the decision of performing next
mean shift iteration are all sequential tasks. Configuring
FPGA to perform these tasks will not enhance the fps but
may consume more resources. Same goes with the final
computation of mean shift vector which involves a lot
of multiplication operations. Using the dedicated multi-
plier of processor, we can obtain the values much faster.
Figure 2 shows the operations performed by PS to send
the kernel to PL and finally evaluate mean shift vector.

3.1.1  Kernel Extractor
PS loads the video from RAM of FPGA and then reads
the video frame by frame. It then identifies the Region
Of Interest (ROI) that essentially consists of the object to

Figure 1.  Hardware/software partitioning

Improved FPGA Implementation of Real Time Modified Mean Shift Tracking Algorithm

Indian Journal of Science and Technology4 Vol 9 (39) | October 2016 | www.indjst.org

be tracked. The frame captured contains candidate kernel
of size 20*20 which is framed around ROI by the proces-
sor. The processor via AXI-4 Lite bus sends the kernel to
FPGA by mapping the data onto the specific addresses
generated by address generator. The address generator
employed by PS involves a lot of shift operations which
would have used a lot of resources had it been the soft
processor. The subsequent frame is then read to generate
target kernel of size 20*20 and the same operation is per-
formed to send the target kernel to FPGA using address
generator and mapping the data. Thus a lot of shift opera-
tions are used and using SoC, the task is done faster. The
kernel sent by PS to FPGA is used to compute the weights
explained in the next section.

3.1.2  Mean Shift Vector Computation
Once the processor obtains the weights from FPGA, it
uses its dedicated multiplier to compute the mean shift
vector. The intensity of each pixel in second frame is
multiplied with its corresponding weight obtained from
FPGA by PS. PS uses the result of multiplication to cal-
culate mean shift vector. Following the computation of
mean shift vector, the decision to perform the next itera-
tion is taken by PS which might have used comparators if
would have been configured on FPGA. Additionally, the
process of decision making is a sequential operation and
configuring FPGA for it gives no advantage of parallel
nature of FPGA. Thus division of task is done carefully
between SoC and FPGA while maintaining high fps but
consuming less resources at the same time. Not only SoC

performs the sequential task faster, the resources which
might have been used by configuring soft processor on
FPGA are not used now and provide us the flexibility to
easily expand the IP in future.

3.2  Programmable Logic
The crux of any FPGA is the reconfigurable PL which
can be programmed to any user hardware. Not only the
custom hardware suits the user requirements by perform-
ing the task in parallel, it also gives user the flexibility
to expand the window size or add newer operations in
future. All this expansion comes at the cost of using more
resources but unlike PS, it does not affect fps if hardware
is designed properly. Therefore exploiting the parallel
nature of FPGA will give higher fps.

Spatial Weight: 1.	 The histogram of a kernel represents
the number of pixels to the corresponding intensity.
Thus in a normal histogram, each pixel of a particu-
lar intensity contributes a factor of 1. However, in a
weighted histogram, not only the intensity but the
spatial location also decides the contribution factor.
The scalar factor decided on the basis of spatial loca-
tion of a pixel is referred to as spatial weight. Thus
pixel at the canter should be preferred over a pixel at
the edges even if they have the same colour. The pixels
laying at the centre gets their colour value multiplied
by 4 indicating the higher preference they got over
other pixels. The pixels farther away from the centre
are multiplied by 2 and those which are at the edges
are multiplied by factor of 1.

	 Figure 3 shows the variation of spatial weight with
respect to the distance from the central pixel. As the
distance from the central pixel increases, the spatial
weight decreases, there by indicating an inverse rela-
tionship between the two parameters. Figure 4 also
illustrates this by assigning spatial weight of ’4’ to D8
pixels, a value of ’2’ to D16 pixels and a value of ’1’
to the remaining pixels. D8 pixels are closest to the
central pixel and constitute the immediate pixels in
horizontal, vertical or in diagonal directions directly
in contact with the central pixel. D8 pixels form a
square around central pixel with side equivalent to 3
pixels. Similarly, D16 pixels are the next neighbouring
pixels forming a square around central pixel as shown
in Figure 4.

	 The weight assigned to the D8 pixels is higher than
D16 pixels which in turn is higher than other pixels

Figure 2.  Processing section

Rajesh Rohilla and Rajiv Kapoor

Indian Journal of Science and Technology 5Vol 9 (39) | October 2016 | www.indjst.org

by Gaussian function. However, the Gaussian function
is a continuous function and cannot be realized on
FPGA and is approximated by the function shown in
Figure 4.
Histogram: 2.	 In our implementation of hardware on
FPGA, candidate and target kernel obtained from PS
are used to form the candidate and target weighted
histogram. The histogram computation starts with
identifying the intensity value of each pixel with the
help of multiplexer and a histogram bin is assigned to
that pixel. The histogram of each pixel referred to as
“Pixel Histogram” in Figure 5 is used to maximize the
parallelization. Rather than extracting intensity value of
each pixel one by one, all pixels have their correspond-
ing multiplexer that evaluates intensity value in one
cycle. This concept eliminates the shared multiplexer
used by13 and parallelizes the operation of comput-
ing the weighted histogram resulting in less operation
time. The parallel nature obtained by computing histo-
gram of all pixels of target and candidate kernel in one
machine cycle would not have been possible on SoC
and saves nearly 1500 machine cycles (799 multiplexer
and 799 spatial weight multiplication cycles) in ker-
nel of size 20*20. The histogram bin of each pixel has
16*2 bits. The 2 bits take in to consideration the con-
tribution of spatial weight. This also explains the less
number of mean shift iterations required over others
providing an advantage of higher fps.
Back to PS: 3.	 The histograms obtained of each pixel are
added to give weighted histogram for both candidate
and target kernel. The adder tree used here performs

Figure 3.  Block diagram showing weight computation logic over hardware

Figure 4.  Spatial weight

present at the edges. This can be reasoned by more
information present at the centre than at the edges.
Hence, more weightage is given to the pixels at the
centre than at the edges. The weightage of a pixel with
respect to its distance from the central pixel is mapped

Improved FPGA Implementation of Real Time Modified Mean Shift Tracking Algorithm

Indian Journal of Science and Technology6 Vol 9 (39) | October 2016 | www.indjst.org

operations in nearly 10 machine cycles and saves 1000
addition machine cycles. The weighted histograms
obtained from adder tree undergo division and square
root operations on hardware and are executed in one
division and one square root machine cycle. On PS,
it would have taken15 additional division and square
root machine cycles which internally involve lot of
addition and multiplication operations. The output of
square root is the weights which are fed to PS to finally
compute the mean shift vector.

	 Coming back to the parallel nature of FPGA, our
configured hardware performs all the operations-
identifying pixel value, spatial weight multiplication
and adding pixel histogram to obtain weighted his-
togram in one machine cycle. Additionally, each bin
of two weighted histogram undergoes division and
square root parallel to give final weights.

4.  Performance Comparison
Various tracking implementations are summarised in
Table 1.13 achieved 25 fps in case of PAL and 30 fps in case
of NTSC employing mean shift on sequential processor.

7achieves 25 fps on FPGA EP1C6 of Altera Co by
again using mean -shift algorithm but did not extract
full parallelization capability of FPGA. Using particle
filter8 mentioned 56.38 fps performed on XC2V8000-
4CFF1152 FPGA whereas 12used Xilinx Virtex-4SX
FPGA on prototype board Virtex-4 Evaluation Kit from
Avnet to process 25 frames per second data at low reso-
lution 128*128 pixels monochrome image13 achieved
the highest fps of 833 using mean shift on Spartan 3-E

by incorporating both the processor and hardware to
do so. The work done by us is also similar to13 with the
difference of: a) partitioning of hardware and software
between SoC and FPGA. b) Along with the different
mechanism of partitioning, soft processor employed by
13is replaced by the on chip dedicated RISC processor.
This allowed us to achieve operation time of 0. 08s for
200 frames resulting in 2500 fps, c) the number of itera-
tions is also limited to 5 as compared to 20 by 13due to
alteration in evaluating weights, and d) lastly, the his-
togram bins are not using fixed representation but have
flexible digits representation resulting in less binary val-
ues to be operated upon. All these factors contributed to
low usage of resources with higher fps.

5.  Experimental Results
Figure 6 shows the results applied on different test cases
in which a man is tracked in various environments.
The test results come out to be satisfactory and suc-
cessful. Implementation of mean shift algorithm on
Xilinx ZYNQ ZC-702 consumes considerable amount of
resources available on FPGA. This can be attributed to the
large amount of parallelization achieved at cost of higher
resource consumption with high fps as the outcome.

Table 2 shows the resource utilization in detailed
numbers. Each histogram to a pixel of target/kernel is rep-
resented by 16*2 bits. Weighted histogram requires 16*8
bits and weights are denoted by 16*16 bits. The algorithm
is implemented on a man walking in front of a static back-
ground. The background includes a building, green grass,
black roads and other people. The algorithm successfully
tracked the man walking from one side of the building to
the other side.

Figure 5.  Pixel histogram

Table 1.  Performance comparison

Device Algorithm Frame/s Reference

Xilinx Virtex-4 Particle Filter 25 Marek Wjcikowski12

Altera EP1C6 Mean Shift 25 Xiaofeng Luand DiqiRen7

Xilinx Microblaze Mean Shift 30 Usman Aliand
M.B. Malik6

XC2V8000 Particle Filter 57 Jung Uk Cho8

Xilinx Spartan3-E Mean Shift 833 Usman Aliand
Mohammad Bilal Malik13

Xilinx ZYNQ
ZC-702 MeanShift 2500 Our Algorithm

Rajesh Rohilla and Rajiv Kapoor

Indian Journal of Science and Technology 7Vol 9 (39) | October 2016 | www.indjst.org

6.  Conclusion
In this paper, we have proposed a new hardware/software
approach to the implementation of mean shift tracking on
SoC. It uses the dedicated processor’s sequential capabil-
ity to extract kernel from frame and compute the mean
shift vector quickly. The parallel nature of FPGA is also
exploited to get the weights in fewer machine cycles. Thus
combination of the two spectrums provided us the ability
to keep resources low while getting higher fps. It is also
expected that increase in size of kernel will not affect the
fps provided the resources are kept in check.

Though the fps achieved is quite high and can be
used for real time applications, the future possibilities
always lead to improved efficiency and performance. The

resolution of video used can be improved from 240p to
360p or 480p. Higher resolution will pave way for appli-
cations which require large details like number plate
detection, face recognition in crowd etc.

7.  References
1.	 Comaniciu D, Ramesh V, Meer P. Real-time tracking of

non-rigid objects using mean shift. In: Computer Vision
and Pattern Recognition, Proceedings. IEEE Conference on
USA.2000, 2, p. 142–49.

2.	 Agarwal VK, Sivakumaran N, Naidu V. Six Object Tracking
Algorithms: A Comparative Study. Indian Journal of Science
and Technology. 2016; 9(30):1–9.

3.	 Altaf A, Raeisi A. Presenting an effective algorithm for track-
ing of moving object based on support vector machine. Indian
Journal of Science and Technology. 2015 Aug 21; 8(17):1-7.

4.	 Chandrajit M, Girisha R, Vasudev T, Hemesh M. Data
Association and Prediction for Tracking Multiple Objects.
Indian Journal of Science and Technology. 2016 Sep 16;
9(33):1–13.

5.	 Johnston CT, Gribbon KT, Bailey DG. Implementing image
processing algorithms on FPGAs. In: Proceedings of the
Eleventh Electronics New Zealand Conference, ENZCon’
New Zealand. 2004, p. 118–23.

Figure 6.  Frames showing the tracked man in different test cases

Table 2.  Resource utilization

Resource Available Utilized Percentage
LUT 53200 15965 30

BUFG 32 4 12
Register 106400 5008 5

Slice 13300 8090 60

Improved FPGA Implementation of Real Time Modified Mean Shift Tracking Algorithm

Indian Journal of Science and Technology8 Vol 9 (39) | October 2016 | www.indjst.org

6.	 Ali U, Malik MB, Munawar K. FPGA/soft-processor based
real-time object tracking system. In: Programmable Logic,
SPL. 5th Southern Conference on Pakistan, 2009 Apr,
p. 33–37.

7.	 Lu X, Ren D, Yu S. FPGA-based real-time object tracking
for mobile robot. In: Audio Language and Image Processing
(ICALIP), International Conference on Shanghai University,
2010 Nov, p. 1657–62.

8.	 Cho JU, Jin SH, Pham XD, Jeon JW. Multiple objects track-
ing circuit using particle filters with multiple features. In:
Robotics and Automation, IEEE International Conference on
Korea, 2007 Apr, p. 4639–44.

9.	 Lu X, Wang S, Du Z, Pei D, Zheng D, Zuo T. Parallel
Particle Filter Algorithm and Its FPGA Implementation. In:
International Conference on Computer, Communications and
Information Technology Atlantis Press China, 2014, p. 1–4.

10.	 Rodriguez A, Moreno F. Evolutionary Computing and
Particle Filtering: A Hardware-Based Motion Estimation
System. IEEE Transactions on Computers. 2015 Nov 1;
64(11):3140–52.

11.	 El Hajjouji I, El Mourabit A, Asrih Z, Mars S, Bernoussi B.
FPGA based real-time lane detection and tracking imple-
mentation. In: 2016 International Conference on Electrical
and Information Technologies (ICEIT), IEEE, 2016 May 4,
p. 186–190.

12.	 Wojcikowski M, Zaglewski R, Pankiewicz B. FPGA-based
real-time implementation of detection algorithm for auto-
matic traffic surveillance sensor network. Journal of Signal
Processing Systems. 2012 Jul; 68(1):1–8.

13.	 Ali U, Malik MB. Hardware/software co-design of a real-
time kernel based tracking system. Journal of Systems
Architecture. 2010 Aug; 56(8):317–26.

