
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(46), DOI: 10.17485/ijst/2016/v9i46/107202, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Balancing Spatial Locality with Parallelism in Solid
State Disks

Myeong-Ho Lee1, Jongmoo Choi2 and Seungjae Baek3*

1Department of Ecommerce, Semyung University, Jecheon, Chungbuk, 27136, Korea; mhlee@semyung.ac.kr
2Department of Software Science, Dankook University, Yongin, Gyeonggi, 16890, Korea; choijm@dankook.ac.kr

3Korea Institute of Ocean Science and Technology, Ansan, Gyeonggi, 15627, Korea; baeksj@kiost.ac.kr

Keywords: Allocation Policy, Locality, NAND, Parallelism, SSDs

Abstract
Objectives: Modern flash memory based storage systems, such as Solid State Disks (SSDs), are actively utilizing the
channel/way interleaving to exploit parallelism among multiple NAND chips. Methods/Statistical Analysis: However,
the flip side of the interleaving is that it disperses data with spatial locality across different NAND blocks, which eventually
causes a high garbage collection overhead. To overcome this problem, we propose a spatial locality-aware allocation policy,
called SLAP. It uses the notion of stream, which is defined as a set of data having consecutive Logical Page Numbers (LPN).
Findings: By allocating a stream into a NAND block separately, it can preserve the spatial locality. In addition, by handling
multiple streams simultaneously, it can obtain the parallelism among NAND chips. Also, we discuss that SLAP can balance
between locality-preserving and parallelism by providing a spectrum from a traditional parallelism-oriented allocation to
a strict locality-preserving one. We have implemented SLAP on a page-level mapping Flash Translation Layer (FTL) that
is being used as a default FTL in many commercial SSDs. Improvements/Applications: Trace-driven simulation based
experimental results have shown that SLAP can improve performance by up to 35.3% with an average of 13.1%, compared
with the traditional allocation policy for the three workload considered.

1. Introduction
SSDs are expanding their usage from laptop to high per-
formance computing servers1-3 and enterprise systems.
Applications on these systems require new capabilities
with various aspects such as capacity, performance, and
reliability and so on. In order to meet these requirements,
modern SSDs make use of several cutting-edge technolo-
gies.

Specifically, to enlarge capacity, SSDs adopt the multi-
channel multi-way architecture, consisting of multiple
independent NAND chips. For instance, Intel X25M SSD
consists of 10 channels and 2 ways per channel (total
20 chips)4, while Micron P420m SSD has 32 channels
with4 ways per channel (total 128 chips)5. In addition, to
improve performance, SSDs utilize write buffer and chan-
nel/way interleaving, which enable to exploit parallelism

among multiple NAND chips6. To enhance reliability,
advanced error correction code such as Low-Density
Parity Check (LDPC)7, RAID-based scheme8 and wear-
unleveling technique9 are integrated into SSDs. Also, to
increase applicability, SSDs employ new techniques such
as de-duplication10 and caching mechanisms2,11.

By the way, the channel/way interleaving is, in fact,
a double-edged sword. On the positive side, it can boost
performance by handling read/write requests in parallel-
ing using multiple chips. However, the downside is that it
disperses data with spatial locality across multiple chips.
Data with spatial locality have a tendency to be updated
or deleted at the same time. Hence, the dispersion make
invalidated pages to be scattered across multiple blocks,
which eventually deteriorates the garbage collection per-
formance. To overcome this problem, we propose a novel
allocation policy, called Spatial Locality-aware Allocation

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 2

Balancing Spatial Locality with Parallelism in Solid State Disks

Policy (SLAP). The key idea of our proposal is introducing
the concept of stream. This concept is devised to identify
data that have a high possibility to be updated or deleted
at the same time. Specifically, in this study, we define a
stream as a set of write requests in the write buffers in
SSDs, which have consecutive LPNs.

Once streams are identified, SLAP allocates them
into different blocks in an isolated manner. This alloca-
tion enables data with spatial locality to be preserved in
a block, allowing invalidated pages bounded in the block.
Besides, by processing multiple streams simultaneously
using multiple NAND chips, it still takes advantages of
the channel/way interleaving effects. Also, we discuss
that SLAP can balance between locality-preserving and
parallelism by providing a spectrum from a traditional
parallelism-oriented allocation to a strict locality-pre-
serving one.

The proposed SLAP can be integrated into any type
of FTLs. In this study, we have implemented SLAP on a
page-level mapping FTL using the Disk12 with SSD exten-
sion13. Experimental results have revealed that SLAP can
improve performance by up to 35.3% with an average of
13.1%, compared with the traditional allocation policy for
the three workloads considered.

Figure 1. General SSD architecture.

The rest of this paper is organized as follows. We
describe related work in Section 2. Then, the key concept
of our proposal is elaborated in Section 3. The existence
of spectrum between parallelism and locality is discussed
in Section 4. Section 5 shows the performance analysis
results with Disk Sim. Finally, we give the conclusion and
future work in Section 6.

Figure 1 shows the general architecture of SSDs. It con-
sists of two main parts, SSD controller and NAND flash
chips. The SSD controller consists of the host interface,
processor, DRAM and flash controller. The processor and
DRAM are used for executing FTL. Also, large portion
of DRAM is used as the write buffer, a kind of cach-
ing area for keeping write requests. NAND flash chips
are connected into the SSD controller through the flash
controller, constructing multi-channel and multi-way
structure. Hence, data on different chips can be accessed
simultaneously using the channel/way interleaving.

Each NAND flash chip is divided in multiple blocks,
which is further divided into multiple pages. A page is
the unit for the read/write operations while a block is the
unit for the erase operation. NAND flash memory has
two unique characteristics, erase-before-write and a lim-
ited number of program/erase cycles. To deal with these
characteristics, SSDs employ a software layer called FTL,
which provides: 1. mapping for the out-place update, 2.
garbage collection for reclaiming invalidated pages, and
3. wear-leveling for enhancing the lifetime of flash memo-
ries14.

Since FTL plays a key role for the performance and
reliability of SSDs, it has been studied intensively during
recent decades15-20. Based on the mapping techniques,
FTLs can be classified into three categories; page-level
mapping, block-level mapping and hybrid mapping21.
Page-level mapping FTLs supports high flexibility and
performance while requiring large DRAM space to main-
tain mapping table with page granularity. On the contrary,
block-level mapping FTLs can minimize the DRAM
requirement while often suffering from performance deg-
radation due to reclaiming. Hybrid mapping FTLs try to
balance the memory requirement and performance15.

To reduce the memory requirement of the page-level
mapping FTL, Gupta et al. propose DFTL (demand-based
FTL)that keeps only recently referenced portion of the
page-level mapping table in memory17. In20 suggest Lazy
FTL that updates the cached page-level mapping table
in a lazy manner to enhance not only performance but
also reliability20. In19 designs Janus-FTL that finds optimal
partitions where one partition is managed by page-level
mapping while the other managed by block-level map-
ping19. Our proposal can be integrated into any type of
FTLs. But, in this study, we mainly focus on the page-level
mapping technique since it is commonly used in modern
SSDs.

Indian Journal of Science and Technology 3Vol 9 (46) | December 2016 | www.indjst.org

Myeong-Ho Lee, Jongmoo Choi and Seungjae Baek

Some FTLs are closely related to our study in the
aspect that they try to exploit locality. Jiang et al. propose
Spatial locality aware FTL (S-FTL) that takes advantages
of spatial locality to reduce the mapping table size and to
increase hit ratio for in-cache mapping information18. Our
approach is utilizing spatial locality to reduce the garbage
collection overhead while supporting parallelism. Lee et
al. design Locality-Aware Sector Translation (LAST) FTL
that exploits sequential locality, a special case of spatial
locality, for log buffer management and temporal locality
for hot/cold segregation to reduce the garbage collec-
tion overhead16.However, they are focusing on the hybrid
mapping schemes only and do not consider the parallel-
ism issues. To the best of our knowledge, this study is the
first one that attempts to preserve spatial locality, while
supporting parallelism in SSDs.

2. Key Concept
In this section, we first discuss the problem of the tradi-
tional allocation policy used in SSDs using a walk-through
example. Then, we elaborate how our proposal overcomes
the problem. Figure 2 shows how the traditional policy
allocates flash memory pages to service write requests.

(a) After programming write requests in a write buffer

(b) After deleting (or updating) data D7~D15

Figure 2. Traditional allocation policy specific time window
or data with causality22.

In the Figure 2, we assume that SSD consists of four
flash memory chips, each of which has four blocks, and
each block has four pages. We also assume that there is no
written data in the flash memory initially. Every request
(Dn in this Figure 2, where n is a logical page number) is
firstly stored in a write buffer and will be programmed
into a page depending on FTL’s allocation policy.

Figure 2a shows the contents of flash memory after
programming all the write requests in the write buffer.
For maximizing performance, the traditional allocation
policy allocates pages in a round-robin manner (i.e.,
interleaving) to fully utilize parallelism. For example, D1
is stored on the first flash chip and D2 on the second flash
chip, and so on.

After that, assume that D7~D15 are requested to be
deleted (or updated) as shown in Figure 2b. Note that this
sort of requests is frequently incurred on a file deletion or
even for a very small update to a Word or a Power Point
file as the file is compressed21. Invalidated pages exist all
over the chips, causing the significant garbage collection
overhead. Specifically, seven valid page copies for D1,
D38, D2, D39, D22, D37 and D23 and four block erases
are required.

With identical requests and configurations to Figure
2 and 3 shows how our proposed SLAP works. At first,
SLAP tries to find streams in the write buffer. A stream
can be identified from the write buffer in SSDs using vari-
ous methods such as data with consecutive LPNs or data
written within a in this paper, we mainly focus on the first
method and define a stream as a set of write requests that
have consecutive LPNs. Specifically; we introduce a con-
trol parameter called stream threshold. If the number of
consecutive LPN sis larger than stream threshold, they
are grouped forming a stream and allocated to a block.
When SLAP identifies multiple streams, SLAP allocates
them into different blocks in an isolated manner. In the
example shown in Figure 3, we set the stream threshold
as four. In Figure 3a, three streams are detected, namely
D7~D10, D11~D14 and D22~D25, and allocated on dif-
ferent blocks while rest of the requests that are not a part
of the detected streams are allocated like the traditional
interleaved fashion.

Again, assume that D7~D15 are requested to be
deleted. SLAP requires only three page copies and three
blocks erases for a garbage collection, as shown in Figure
3b. It means that the proposed allocation policy enables

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 4

Balancing Spatial Locality with Parallelism in Solid State Disks

data with spatial locality to be preserved in a block, allow-
ing invalidated pages bounded in the block.

(a) After programming write requests in a write buffer

(b) After deleting (or updating) data D7~D15
Figure 3. Spatial locality-aware allocation policy.

3. Intra-Stream Parallelism
In the case when there are no detected streams, SLAP
distributes write requests using the conventional page
allocation policy, interleaving them among multiple chips.
Therefore, SLAP has no adverse effect on performance
even with the completely randomized write requests.
Note that, in actuality, SLAP can find out streams enough
to utilize all NAND chips due to the fact that modern
SSDs employ a large size write buffer, usually manipu-
lating more than 4,000write requests22,24. By processing
multiple streams simultaneously, it takes advantages of
the channel/way interleaving effects for write requests.

However, when we consider read requests, the story
becomes different. For example, assume that D22~D25
are Again, requested for read in Figure 2b and 3b, respec-
tively. In Figure 2b, the four pages can be read from four
NAND chips in parallel while they are read from one
chip in Figure 3b. It implies that SLAP has a potential
to degrade the read performance when the requests had
been handled as a stream and there are these read requests
only in SSDs.

There are three feasible solutions to overcome this
problem. One is a hardware-level approach, employ-
ing additional buffer in a NAND chip and exploiting a
pipeline-like mechanism so that different components of

the read latency of multiple requests could be overlapped
in SSDs. Such mechanisms are actively studied in DRAM
research area. However, it demands hardware modifica-
tions, which is beyond the scope of this paper. The second
solution is applying data reorganization. In SSDs, during
garbage collecting, we have a chance to rearrange data for
various purposes such a shot-cold separation and static
wear-leveling. At this time, we can recognize data that
have been read intensively in a read-only manner and
redistribute them across multiple blocks. The third solu-
tion is utilizing the parallelism in a stream. In this paper,
we concentrate the third one, leaving the second one as
the future work.

The control parameter, stream_ threshold, can be set at
the ranges from 1 to ‘pages per block’ (PPB). When it is
set as1, SLAP behaves like the traditional policy, distrib-
uting all requests in an interleaved manner. At this point,
we can make full use of parallelism. When the parameter
becomes larger, SLAP tries to detect streams and allocates
each block into different blocks to obtain the local-
ity preserving benefit. In other word, by controlling the
parameter, SLAP supports a spectrum between parallel-
ism and locality, providing an optimal value by balancing
these two aspects.

To enhance the read performance, we devise a mech-
anism that divides a stream further for exploiting the
intra-stream parallelism. Specifically, we introduce a new
control parameter, called Δ, and partition a stream into
Δ sub-streams. Each sub-stream is allocated into a dif-
ferent block. The value of Δ is determined by the ratio
between the read latency of a NAND chip and the sum
of other FTL overheads (for short, we refer to it as a FTL
overhead). For instance, when we assume the read latency
as 150 us and the FTL overhead as 50 us, Δ becomes 3, as
illustrated in Figure 4. As summary, the stream threshold
is devised to balance the parallelism and locality for write
requests, while Δ to control the degree of parallelism for
read requests.

Figure 4. Δ for overlapping the read latency and FTL
overhead while preserving locality.

Now we would like to mention about the tradeoff
between performance and energy consumption. By uti-

Indian Journal of Science and Technology 5Vol 9 (46) | December 2016 | www.indjst.org

Myeong-Ho Lee, Jongmoo Choi and Seungjae Baek

lizing multiple channel, way and NAND chips, we can
obtain better performance. However, in terms of energy
consumption, providing relevant performance only
with small number of channel/way is very desired23. It
means that SLAP efficiently controls not only the trad-
eoff between spatial locality and parallelism in terms of
performance but also the tradeoff between power con-
sumption and performance.

4. Performance Evaluation
To quantitatively evaluate the effectiveness of SLAP, we
have built two synthetic workloads and have chosen three
real worlds workloads25-27. We have implemented SLAP
at Disk Sim 4.0 with SSD extension12,13. We set the page
size as 4 KB and PPB as 128, and we use default values
for all other parameters. Each experiment was run on the
simulator five times, and we use an average value of the
executions when reporting results. Before each measure-
ment, the simulated storage space is fully filled with the
workloads for each of those experiments.

4.1 Synthetic Workload
Figure 5 shows the results from the synthetic workloads.
Specifically, Figure 5a and 5c present I/O Per Second
(IOPS) for both of sequential and random workloads
when we vary stream threshold from 8 to 128 while Δ
is set as1. Figure 5b and Figure 5d present how many
streams are identified during the tests. Observations from
the results can be summarized as follows:

•	 Depending on the characteristics of each work-
load, optimal stream threshold is varied, and the
number of identified stream is the main driv-
ing factor in performance. Specifically, SLAP
enhances performance up to 325.9% (134.2% on
average) for the sequential workload, and up to
36.4% (1.84% on average) for the random work-
load. These performance gains are due to the
reduction of the number of copies and erases,
as shown in Table 1. Even when no stream is
detected, there is no hazard at all because SLAP
allocates pages in a conventional manner in that
case. Therefore, as expected, there are no differ-
ences when no stream is found.

The optimal value of stream threshold is 16 and 8, for
sequential and random workload, respectively. When it
becomes larger, the number of pages included in streams

(a) Sequential: IOPS

(b) Sequential: stream page identification

(c) Random: IOPS

(d) Random: stream page identification
Figure 5. Synthetic workload.

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 6

Balancing Spatial Locality with Parallelism in Solid State Disks

decreases, leading to less performance improvement.
When it becomes smaller than the optimal value, the per-
formance gains become smaller even though SLAP detects
more streams, because several streams are interweaved in
a block, resulting in the increasing of the number of cop-
ies and erases. It implies that stream threshold needs to be
set enough to preserve the spatial locality in an isolated
manner.

•	 When we change Δ as 2 or 4, the performance
gains show similar trends when we set a smaller
stream threshold. For instance, performance
measured under the configuration of stream
threshold as 16 and Δ as 2 is similar to that
observed under the different configuration

when stream threshold is 8and Δ is 1. The rea-
son is that, in two configurations, the number
of pages written in a block is the same, that is
8,and the out-of-order executions in SSDs allows
read requests to be served in a similar fashion.
Besides, these workloads issue requests enough
to make most of NAND chips busy.

4.2 Realistic Workloads
Let us look at the effectiveness of SLAP with well-known
realistic workloads. Figure 6 shows IOPS and stream page
identification results for Proxy, OLTP, and Concat work-
loads.

Table 1. Number of erase and copy.

Items Stream_
threshold

of erase # of copy
w/ SLAP w/o

SLAP
w/
SLAP

w/o SLAP

Seq. 8 45,874 47,082 14,011 166,334
16 45,792 47,082 4,084 166,334
32 46,488 47,082 92,055 166,334
64 46,142 47,082 128,373 166,334
128 47,082 47,082 166,334 166,334

Rand. 8 35,126 35,304 27,060 49,492
16 35,266 35,304 44,925 49,492
32 35,292 35,304 47,938 49,492
64 35,292 35,304 47,938 49,492
128 35,292 35,304 47,938 49,492

Proxy 8 115,486 115,804 0 39,615
16 115,482 115,804 0 39,615
32 115,490 115,804 0 39,615
64 115,486 115,804 0 39,615
128 115,488 115,804 0 39,615

OLTP 8 10,077 10,433 436,572 442,070
16 10,400 10,433 441,000 442,070
32 10,400 10,433 441,000 442,070
64 10,400 10,433 441,000 442,070
128 10,400 10,433 441,000 442,070

Concat 8 538,106 537,018 4,040,505 3,901,669
16 536,984 537,018 3,898,198 3,901,669
32 535,370 537,018 3,692,689 3,901,669
64 535,512 537,018 3,711,296 3,901,669
128 535,670 537,018 3,730,982 3,901,669

Indian Journal of Science and Technology 7Vol 9 (46) | December 2016 | www.indjst.org

Myeong-Ho Lee, Jongmoo Choi and Seungjae Baek

(a) Proxy: IOPS

(b) OLTP: IOPS

(c) Concat: IOPS

(d) Proxy: stream page identification

(e) OLPT: stream page identification

(f) Concat: stream page identification
Figure 6. Realistic workload.

•	 For Proxy, a large amount of streams, which is
sufficient to improve the performance, are iden-
tified. Specifically, performance improvement
with SLAP was (very consistently) 35.3% on the
average. With SLAP, the number of copies, which
is the main source for this improvement, is zero
as shown in Table 1. It implies that SLAP can dif-
ferentiate invalid data that are deleted/ updated
together from valid data.

•	 In OLTP, only small numbers of streams are
detected because it primarily has very random
small size requests. However, as we already have
seen, there’s no harm in performance, and what
is more, those small numbers of streams facili-
tate up to 7.2% and 2.1% on average performance
improvements. It also uncovers that random
workloads prefer smaller stream threshold as
discussed in Figure 5c.

•	 The Concat workload shows very interesting
results. Even though there are a considerable
number of streams (up to 38.2% and 12.7% on

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 8

Balancing Spatial Locality with Parallelism in Solid State Disks

average), the performance improvement is 4.7%
at maximum and only 2.0% on average. The big-
gest performance gain is obtained when stream
threshold is 32. When it is 8, SLAP degrades
performance due to the increment of copies, as
shown in Table 1. Our closer investigation shows
that some requests which are never accessed
again are identified as streams, and reside in a
block, deteriorating the garbage collection over-
head. This problem is caused because smaller
stream threshold makes streams intermixed in a
block and some are modified/ deleted while oth-
ers are not. We can overcome this problem by
segregating new writes and writes from the gar-
bage collection into different blocks.

5. Conclusion
This paper proposes a novel spatial locality-aware alloca-
tion policy called SLAP. We carefully argue that utilizing
interleaving without considering the locality makes stor-
age performance worse over time, especially in SSDs. It
can provide high performance at the initial stage, but the
performance drops significantly as time goes and utiliza-
tion becomes higher at the steady state. Our experiments
shows that SLAP preserves data with locality in a block
in SSDs while exploiting parallelism, resulting in per-
formance improvements compared with the traditional
allocation policy.

We envision a couple of directions for future research.
First, we will explore the dynamic stream threshold
adjusting. It is a relevant approach as workloads are con-
tinuously changed in everyday SSDs. Second, we will
extend SLAP to enhance the parallelism for read requests
including the hardware acceleration and data reorga-
nization. Also, we investigate the effect of intra-stream
parallelism with more read-intensive workloads.

6. References
1. Kim Y, Oral S, Shipman G, Lee J, Dillow D, Wang F.

Harmonia: A Globally Coordinated Garbage Collector for
Arrays of Solid-State Drives, In: Proceeding of the IEEE 27th
Symposium on Mass Storage Systems and Technologies,
Denever, CO, 2011 May, 1−12.

2. Albrecht C, Merchant A, Stokely M, Waliji M, Labelle
F, Coehlo N, Shi X, Schrock CE. Janus: Optimal Flash

Provisioning for Cloud Storage Workloads, In: Proceedings
of the USENIX Annual Technical Conference, Berkeley;
2013. p. 91−102.

3. Monfared V, Hassan M, Daneshmand S, Taheran F,
Kaewtrakulpong P. Effects of Geometric Factors and
Material Properties on Stress behavior in Rotating Disk,
Indian Journal of Science and Technology. 2014; 7(1):1−6.

4. Yoo B, Won Y, Choi J, Yoon S, Cho S, Kang S. SSD
Characterization: From Energy Consumption’s Perspective,
In: Proceedings of the 3rd USENIX Conference on Hot
Topics in Storage and File Systems, Berkeley, CA, USA,
2011, 3−3.

5. MICRON. P420m Architecture. Date Accessed: 2016.
Available at: http://www.micron.com/products/solid-state-
storage.

6. Agrawal N, Prabhakaran V, Wobber T, Davis JD, Manasse
M, Panigrahy R. Design Tradeoffs for SSD Performance, In:
Proceedings of the USENIX Annual Technical Conference,
Berkeley, CA, USA, 2008, 57−70.

7. Zhao K, Zhao W, Sun H, Zhang T, Zhang X, Zheng N.
LDPC-in-SSD: Making advanced Error Correction Codes
Work Effectively in Solid State Drives, In: Proceedings
of the 11th USENIX Conference on File and Storage
Technologies; 2013. p. 243−56.

8. Kim J, Lee J, Choi J, Lee D, Noh S. Improving SSD Reliability
with RAID via Elastic Striping and Anywhere Parity, In:
Proceedings of the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
Budapest; 2013. p. 1−12.

9. Jimenez X, Novo D, Ienne P. Wear Unleveling: Improving
NAND Flash Lifetime by Balancing Page Endurance, In:
Proceedings of the 12th USENIX Conference on File and
Storage Technologies; 2014. p. 47−59.

10. Chen F, Luo L, Zhang X. CAFTL: A Content-Aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory
Based Solid State Drives, In: Proceedings of the 9th USENIX
Conference on File and Storage Technologies; 2011. p. 6−6.

11. Oh Y, Choi J, Lee D, Noh SH. Caching Less for Better
Performance: Balancing Cache Size and Update Cost
of Flash Memory Cache in Hybrid Storage Systems, In:
Proceedings of the 10th USENIX Conference on File and
Storage Technologies; 2012. p. 25.

12. Bucy JS, Schindler J, Schlosser SW, Ganger GR. The
DiskSim Simulation Environment Version 4.0 Reference
Manual, Technical report, CMU-PDL-08-101, Carnegie
Mellon University, 2008.

13. SSD Extension for DiskSim Simulation Environment. Date
Accessed: 06/03/2009. Available at: http://research.micro-
soft.com/en-us/downloads.

14. Gal E, Toledo S. Algorithms and Data Structures for Flash
Memories, ACM Computing Surveys. 2005; 37(2):138−63.

Indian Journal of Science and Technology 9Vol 9 (46) | December 2016 | www.indjst.org

Myeong-Ho Lee, Jongmoo Choi and Seungjae Baek

15. Kim J, Kim JM, Noh S, Min SL, Cho Y. A Space-Efficient
Flash Translation Layer for Compact Flash Systems, IEEE
Transactions on Consumer Electronics. 2002; 48(2):366−75.

16. Lee S, Shin D, Kim YJ, Kim J. LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based
Storage Systems, SIGOPS Operating System Review. 2008;
42(6):36−42.

17. Gupta A, Kim Y, Urgaonkar B. DFTL: A Flash Translation
Layer Employing Demand-Based Selective Caching of
Page-Level Address Mappings, In: Proceedings of the 14th
International Conference on Architectural Support for
Programming Languages and Operating Systems; 2009. p.
229−40.

18. Jiang S, Zhang L, Yuan X, Hu H, Chen Y. S-FTL: An Efficient
Address Translation for Flash Memory by Exploiting Spatial
Locality, In: Proceedings of the IEEE 27th Symposium on
Mass Storage Systems and Technologies, Denver, CO, 2011,
1−12.

19. Kwon H, Kim E, Choi J, Lee D, Noh SH. Janus-FTL:
Finding the Optimal Point on the Spectrum Between Page
and Block Mapping Schemes, In: Proceedings of the 10th
ACM International Conference on Embedded Software,
Scottsdale, Arizona, USA, 2010, 169−78.

20. Ma D, Feng J, Li G. Lazy FTL: A Page-Level Flash
Translation Layer Optimized for NAND Flash Memory,
In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Athens, Greece, 2011,
1−12.

21. Yoo J, Won Y, Hwang J, Kang S, Choi J, Yoon S, Cha J. VSSIM:
Virtual Machine Based SSD Simulator, In: Proceedings of

the IEEE 29th Symposium on Mass Storage Systems and
Technologies, Long Beach, CA, 2013, 1−14.

22. Kim J, Lee C, Lee S, Son I, Choi J, Yoon S, Lee HU, Kang S,
Won Y, Cha J. Deduplication in SSDs: Model and quantita-
tive analysis, In: Proceedings of the IEEE 28th Symposium
on Mass Storage Systems and Technologies, San Diego, CA,
2012, 1−12.

23. Muniswamy-Reddy KK, Holland DA. Causality-Based
Versioning, In: Proceedings of the 7th Conference on File
and Storage Technologies; 2009. p. 15−28.

24. Kim H, Ahn S. BPLRU: A Buffer Management Scheme for
Improving Random writes in Flash Storage, In: Proceedings
of the 6th USENIX Conference on File and Storage
Technologies; 2008. p. 1−31.

25. Megiddo N, Modha DS. ARC: A Self-Tuning, Low
Overhead Replacement Cache, In: Proceedings of the 2nd
USENIX Conference on File and Storage Technologies;
2003. p. 115−30.

26. Narayanan D, Donnelly A, Rowstron A, Donnelly
A, Rowstron A. Write off-loading: Practical Power
Management for Enterprise Storage, In: Proceedings of
the USENIX Conference on File and Storage Technologies;
2008. p. 253−67.

27. ONeil EJ, ONeil PE, Weikum G. The LRU-K Page
Replacement Algorithm for Database Disk Buffering, In:
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC,
USA, 1993, 297−306.

