
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(40), DOI: 10.17485/ijst/2016/v9i40/79423, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Competent Dependence Graph Acclimatize as
Intermediate Representation to Effectuate the Best

Slicing Technique for Object Oriented Programs
Preeti Sikka1* and Kulwant Kaur2

1Punjab Technical University, Jalandhar, Punjab, India; preetisikka@gmail.com
2Apeejay Institute of Management Technical Campus, Punjab Technical University, Jalandhar, Punjab, India;

kulwantkaur@apjimtc.org

Keywords: Change Impact Analysis, Dependence Graph, Fault Localization, Program Slicing, Slicing Technique

Abstract
Objective: The main objective of this paper is to propose a Program Slicing Technique that includes more number of
features than available in any other slicing technique. Methods: Numerous slicing techniques have been originated for
enhancing the outcropping of Program Slicing. Simultaneously varied intermediate representation for representing the
important features and dependencies of statements of a program on one another has been created for the easiness of
creating the slicing technique. Unvaried part in varied techniques while concentrating on one good feature to be interpolated
was overlooking some other important features. The flawed areas of the Available techniques have been found and based
on the solution to overcome them, the technique is proposed that will consist of all important features with taking care
of their flawed areas. Findings: Intermediate representation of a program accompanied by an algorithm is proposed to
surpass the existing graphs by covering their flawed areas and by including more number of features than available in any
other existing representation or technique. Conclusion: From the case studies it is concluded that the important features
like Fault localization, Change Impact Analysis, Better Visualization etc can be achieved with a single technique. Added
advantage is the complexity is reduced, accuracy and efficiency in terms of space and time is improved.

1. Introduction
Diversified representations have been used to represent
the dependencies among the statement of a program.
Based on representation slice of a program is directly
obtained generally by linear time backward walk from
some point in the graph, visiting all its predecessors1.
Starting from the Program Dependence graph various
other graphs have been developed to obtain slice of a
program till date by adding their special feature in the
previous one or by overcoming the limitation of previ-
ous one1. While concentrating on one side, the other side
of the coin has been ignored for e.g. dynamic slice has
reduced the size of static slice but has increase in demand
of memory space, and several work done for space effi-

ciency has not met either precision or has increase in its
runtime overhead etc.

The purpose of the paper is to create the best tech-
nique to slice a program with proper concern given to all
important features like efficiency in space and time, preci-
sion etc. The added features like fault localization, change
impact analysis, Good visualization are attached to it in
same technique.

The better the representation is, the more ease it pro-
vides in creating the slice of a program. Following this
methodology first an intermediate representation has
been created a slicing technique is implemented that
enhances the basic purpose of program slicing with
numerous features all together in single technique and
hence making the slicing technique competent.

Indian Journal of Science and TechnologyVol 9 (40) | October 2016 | www.indjst.org 2

Competent Dependence Graph Acclimatize as Intermediate Representation to Effectuate the Best Slicing Technique for Object
Oriented Programs

The paper specifies the existing graphs with their
deficiencies in Section 2. The scope to overcome the
deficiencies is mentioned together. While overcoming
the existing graphs and techniques, the other important
features that are consolidated in the representation and
slicing technique are overviewed in Section 3.Taking a
sample program, Section 4 shows the actual construc-
tion of graph and algorithm imbedded with the discussed
features. Related work in brief is described in Section 5.
Finally section 6 concludes the paper with the direction of
continuation of work to be covered in future.

2. Comparative Study of Existing
Dependence Graphs
The graphs available are summarized in a Table 1 with the
scope mentioned that is achieved in this paper.

3. Our Approach
After analyzing the deficiencies of different graphs in sec-
tion 2, their extended scope is achieved by upping the
basic feature of program slicing that is to identify the set
of statements in a program that may be affected by a given
change in a program, with the following mentioned fea-
tures step by step in single representation.

Features to be added are-

3.1 Space and Time Efficient
Criterion of slicing a program is taken as of dynamic
slice i.e. statement number with the input value given at
the time of getting the erroneous value. Its limitation of
requirement of large amount of memory space is handled
in the paper. Several ways are adopted to find out the
number of edges and vertices that can be removed with-

Table 1. Existing Dependence Graphs with scope to extend

Sr.
no.

Name of the
Graph

Purpose Extended scope after analyzing the deficiency

1. Program
Dependence
Graph(PDG)1

Representation of
Data Dependency and
Control Dependency
among the statements of
a program

Addition of control edge at every node of PDG makes it
restrictive.
Input value is added in the slice criteria that limit the control
edges by reducing the successor of the node in graph to one

2. System
Dependence
Graph(SDG)2

It is extension of PDGto
represent the inter-
procedural programs

The Reachability algorithm of SDG was imprecise. Precision is
added by ignoring only irrelevant statements and including only
relevant statements.
Also the Visualization is improved than of SDG by lessen down
by the number of vertices using fractal value3.

3. Class
Dependence
Graph(CLDG)4

Representing the
dependencies of distinct
classes.

Other than representing the dependency of distinct classes, the
proposed graph is capable to handle object oriented features like
inheritance as well.

4. Dynamic
Dependence
Graph(DDG)5

and DODG6

DDGadds precision
while computing
dynamic slices. In
addition to it DODG
represents the dynamic
dependency between
instances for a
particular execution
of an object oriented
program

Achieving Precision,DDG and DODG faces the problem of space
especially in case of loop

5. Weighted System
dependence
graph(WSDG)7

Itguides the developer
about the locations that
highly correlates to
failure.

Better way is given in the paper to find the locations that
correlates to failure by differentiating the statements in ‘Must
set’ and ‘May set’ so as to not ignore any of the statement whose
absence may affect the accuracy.

Indian Journal of Science and Technology 3Vol 9 (40) | October 2016 | www.indjst.org

Preeti Sikka and Kulwant Kaur

out affecting the precision. Also Object oriented features
included here, have the capability to reduce the size and
time for running or for testing.

3.2 Prioritizing
In the obtained slice all the statements are not equally
responsible for the produced error8. Statements are dis-
tinguished into three priorities: Statements that are giving
correct output only, Statements responsible for wrong
outputs, in case of more than one output- statements that
are giving one correct output and another wrong output.
The set of statements producing errors for sure is termed
as ‘Must set’, ‘May set’ comprise of statements that may or
may not produce the error, priority 1 is given to the state-
ments that are producing correct values for sure.

3.3 Precision
Précised slice care is taken to include only those state-
ments that actually affect the slicing criterion for the given
execution9. While creating slice care is being taken not to
miss any statement that can affect the criteria and also not
to include any statement that will not affect the criteria.

3.4 Fault Localization
Program Dependence graph helps in locating the fault10.
Once the priorities are set and statements are known of
their behavior, removal of statements with priority 1 will
make the task of locating the fault easy and quick.

3.5 Change Impact Analysis
Other than finding the faulty statement, the proposed slic-
ing technique is helpful in finding the statements which
can be affected if any change is occurred to the program11

3.6 Good Visualization
Vertex near the criterion is connected to many vertices
which may not be required, using the concept of frac-
tal value3 those vertices are filtered out resulting in the
reduced readable size of visualized slice and for precision
it can also be elaborated if required

4. Implementation
Steps discussed in Section 3 are here reformed as an algo-
rithm with the help of sample program shown in Figure 1

which is being represented in a graphical form first shown
in Figure 2. Where the circle represents the statements of
a program and edges joining the vertices ‘a’ to ‘b’ repre-
sents the dependencies of vertex ‘a’ on vertex ‘b’. Figure
3 and Figure 4 is the addition of ‘Inheritance’ feature in
Figure 1 and Figure 2 respectively.

Figure 1. Program to calculate the area of maximum square
and maximum circle from the land whose length and breadth
is given by the user.

Figure 2. Program with inheritance.

In Sequential statements the control will automati-
cally flow to next statement so dependency is only Data
Dependency, while in case of Selection statements control
can be passed through any of the two cases so as to rep-
resent the flow of control an extra vertex has been taken
where both the cases will reach. This extra vertex can be
seen in Figure 2 after statement 16 and 18. In Iterative
statements, an edge will be drawn from the last statement
of the block to the first statement of the block to represent
that and first to next statement after block. This way the
Limitation of PDG of Restrictive nature is taken care of by
removing the control edges.

In Figure 3 Calc is a call site node attached with the
edges carrying actual in vertices and copying that to 5

Indian Journal of Science and TechnologyVol 9 (40) | October 2016 | www.indjst.org 4

Competent Dependence Graph Acclimatize as Intermediate Representation to Effectuate the Best Slicing Technique for Object
Oriented Programs

as formal in vertices similarly carrying actual in vertices
from 6 to 12 and taking formal out vertices from x to 6.

Figure 3. Dependence graph of Figure 1.

In Figure 4 again Calc is a call site node attached with
the edges carrying actual in vertices and copying that to
13 that is the node in a derived class that demands a value
of side from base class and base class is attached with a
call site node ‘setside’ carrying actual in vertices len and
bre and copying it to 5.

Figure 4. Dependence graph of Figure 2.

Inheritance is indicated by the class dependence edge
which passes betweeen base class and derived class, inher-

ited data members and methods can simply be computed
by traversing up the class dependence edge and along the
class membership/data member edges of base class12.

Graphical representation is created by taking ‘Main’
as an initial statement. Representation of flow of data
within and across is shown in previous work13. Taking
that representation as step 1, the other steps of algorithm
is mentioned here.

4.1 Algorithm of Graphical Representation
Step 1: Get the execution trace: Execute the program
once and produce its execution trace (procedure wise)
to know the dependencies among the statements of a
program. Term the set of edges representing the depen-
dencies as ‘E’.

Step 2: Lessens down the number of vertices and Edges:
Vertices are not added for the explanatory statements. For
reduction in number of edges, copy the set of edges from
‘E’ to ‘F’ one by one. While inserting edge to ‘F” checks
the following conditions-

•	 If the same edge is already available (i.e. its suc-
cessor and predecessor is same) then don’t insert
it again.

•	 In case of one time run of loop, u is dependent
on v where v is coming later than u. then no edge
between u and v is drawn. Example u: x=y+2; v:
y=y*2; changed value of ‘y’ in ‘v’ won’t affect ‘x’ in
‘u’ because of non repetition of loop.

•	 In case of input Values inside the loops, i.e while
(i<=n){read(x)}…if(x%2==0)…. Else…}. Add
that input variable i.e. ‘x’ here in dynamic slicing
criteria so as to automatically ignore the state-
ments coming in else part of the condition and

•	 If the edge is already created for one true block,
don’t create the same edge again i.e. all even val-
ues given to x will give same isomorphic graphs.

•	 In case of same code repeating more than once,
edges will not be created again.

Step 3: Graphical Representation of Program: Bind the
different processed together to create representation of
complete program by putting an entry node start and con-
necting it to the starting node of every procedure graph
created, similarly insert a unique exit node ‘stop’ connect-
ing to the end and Join the different created PDG’s using
call site nodes where the edge is going from the calling

Indian Journal of Science and Technology 5Vol 9 (40) | October 2016 | www.indjst.org

Preeti Sikka and Kulwant Kaur

function’s vertices to the entry vertices of the method/
procedure by call edges and actual vertices with formal
vertices with parameter edges

The representation is shown by taking the sample pro-
gram in Figure 1 who’s PDG has been shown in Figure 2,
Figure 3 and Figure 4 shows the same program with its
PDG respectively after adding inheritance to it.

4.2 Algorithm after Creating Graphical
Representation
Step 5: Slice generation: In case of errors take statement
giving output as criteria node and in case of any change
occurred to the program take the statement of change as
criteria node. Follow the arrow from that criteria node in
a backward direction and put all reachable vertices till the
starting point in set of backward slice similarly going for-
ward from the criterion node till the ending node and put
all the reachable nodes in set of forward slice.

•	 In case of errors, required slice is backward
slice set for‘S[output variable]’. For example
s[ar_cr]=are 8, 7, 6, 12, 13, 14,16, 5, 25, 24, 19.
S[ar_sq]= 9,6, 12, 13, 14, 16, 5, 25, 24, 19. Add
input value to the criteria to get reduced slice for
example suppose ar_cr is coming as correct but
ar_sq giving wrong value, the new criteria will be
[ar_sq, l=4, b=3] and S[ar_sq,l,b]= 9, 6, 12, 13,
16, 5, 25, 24, 19.(14 is not included now)

•	 In case of any change occurred in a program
there is a need to find and check the statements
that are now affected, nodes of forward slice set
will be the statement to be only analyzed.

Step 6: Precision: Create Must set as [ar_sq]-S[ar_cr]
(node 9 in above example) that will contain the nodes that
are surely producing the error as the nodes in S[ar_cr] are
giving the correct outputs and hence cannot be errone-
ous. May set constitutes of other nodes that are not even
a part of the set giving correct values and may or may not
produce the error.

The two important steps to attain precision is –
•	 Not to ignore any relevant statement: Only Must

set is ignored
•	 Not to include any irrelevant statement-After

ignoring statements from must set, path is to
be followed by backtracking from the criterion
node in the representation that helps to include
the only nodes that is for sure relevant to the cri-
teria.

Hence precision is attained.

Step 7: Adding Efficiency in Space and Time:
•	 For different input values instead of creating dif-

ferent slice sets, the set will be made as union of
all sets i.e. the nodes already in the set will not
be inserted again, they will be just pointed by the
new slice set. Showing with an example in Figure
4, the new slice set S2 is 1, 2, 4, 10, 11. Only node
4 has to be created, instead of creating the all the
nodes again, the nodes already present in slice
set s1 are just pointed by slice set S2. Whenever
the nodes of specified criteria are required, the
pointed node numbers are highlighted in the
main graph. This way the approach overcomes
the limitation of dynamic slicing of huge space
requirement and become space efficient without
any compromise in its quality and precision.

Also the reduced edges lead to reduced amount of
time taken.

•	 While connecting the two representations of
procedures for the final graph, if the representa-
tion of same code exists is in the two parts i.e.
their graphical representation is same, merge the
second exact representation with the first one
by avoiding its representation and connecting it
with the previous one, it is also in the case of rep-
resenting the another class derived from it.

•	 Special care is given in case of arrays or loops by
performing Static Slicing first- Suppose the crite-
ria to create a slice is <x, 10>, first create a static
slice based on x, so that whenever an input is
given especially in case of loops or arrays, slice is
to be created from less number of statements i.e.
static slice already created, resulting in less time.

•	 Object oriented features themselves have the
capability to reduce the size and time for running
or for testing.

Step 8: Assign weight to each node: Assign the weight 1
to the node representing the statement of the criteria. The
weight of other nodes is given by considering parent child
relationship. Directional edge going from ‘a’ to ‘b’ defines
‘a’ as parent node and ‘b’ is its child node. Taking the node
of criteria as a root node, its immediate child has the same
weight till the node has two children. At the time of two
children, the weight of both children nodes will be 0.5 and
similarly thee weight gets divided with other children.

Indian Journal of Science and TechnologyVol 9 (40) | October 2016 | www.indjst.org 6

Competent Dependence Graph Acclimatize as Intermediate Representation to Effectuate the Best Slicing Technique for Object
Oriented Programs

Step 9: Better Visualization: Reduce the number of
nodes as per their Fractal value where fractal values is
calculated by assigning the weight 1 to the node repre-
senting the node of criteria, fractal value of other node is
same as its parent node and in case the vertex has multiple
parent vertices, the FRACTAL VALUE of a vertex is the
maximum of weights from the weights it is getting from
its different parent vertices3.

From the point where the fractal value of a child is
coming to be higher than of the parent value, remove all
the nodes from that point and add one node labeled as
‘more’. It will lead to visualize the important nodes only
but can be expanded if needed.

The criteria chosen in the paper is same as of dynamic
slicing which enjoys the importance over static slicing
in its reduced size, its ease in handling arrays, pointers
etc13 and also suitable for OOP that contains dynamically
bound for which static slicing is not suitable, It has capa-
bility of handling different thread4 allowing Parallelism in
threaded programs etc. With its advantageous features, its
main drawback is its huge requirement of space in mem-
ory that has been worked by different researchers, it had
been tried by removing some kind of information from
the graph but that led to imprecise slice5. Precision can’t be
compromised, realizing this another time it was tried to
retrieve the data and control dependencies directly from
a program trace14, but that technique was very time con-
suming in performing the sequential search of the trace.
Besides its efficiency, its major limitation is its compressed
graphs have to be fitted entirely in main memory which
may be not possible in case of long-running or complex
software. These limitations are worked out in this paper.

6. Conclusions and Future Work
Graphical Representation of a program and slicing tech-
nique based on that has been created which is indulged
with several important features that have not been all
together in any representation. Dynamic slicing is better
than static slicing; enjoying its feature, its main disadvan-
tage of space is overcome here without compromising
in quality and precision. Approach of connecting the
duplicated codes allow to get executed only once helps in
reducing the complexity in case of errors which also gets
duplicated with the part of the code has to get executed
under several circumstances. Other features like locating
faults, analyzing after change is also an added feature of

the technique. Matching with the needs of today’s soft-
ware organization, graph is capable to handle the classes,
inheritance and when different classes inherit the same
base code, the basic representations will be reused with-
out making the size of graph increased.

With the features included in the graph and slicing
technique, Work will be extended further to make the
representation as of lightweight analysis, to reduce over-
head, to increase speed, these features will be achieved
with parallelism that can handle dynamic threads genera-
tion in iterative statements with precision.

7. References
1. Ottenstein KJ, Ottenstein LM. The program depen-

dence graph in a software development environment.
Proceedings of the 1st ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments; 1984 May. p. 177-84.
Doi:10.1145/800020.808263

2. Horwitz S, Reps T, Binkley D. Inter procedural slic-
ing using dependence. PLDI’88 Proceedings of the
ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation; 1988. p. 35-46.
Doi: 10.1145/53990.53994

3. Kashima Y, Ishio T, Etsuda S, Inoue K. Variable data-flow
graph for lightweight program slicing and visualization.
IEICE Trans INF and Syst. 2015 Jun; E98(6):1194-205

4. Larsen L, Harrold MJ. Slicing object-oriented software.
Proceedings of 18th International Conference on Software
Engineering; Berlin. 1996. p. 495–505.

5. Agarwal H, Horgam JR. Dynamic program slic-
ing. Proceedings of the ACM SIGPLAN
Conference on Programming Language
Design and Implementation; 1990. p. 246-56.
Doi: 10.1145/93542.93576, 246-256

6. Zhao J. Dynamic slicing of object-oriented programs.
Wuhan University Journal of Natural Sciences. 2001; 6(1-
2):391-7.

7. Deng F, Jones JA. Weighted system dependence graph.
IEEE 5th International Conference on Software Testing,
Verification, Validation; Montreal, QC. 2012. p. 380-9.

8. Zhang X, Gupta N, Gupta R. Pruning dynamic slices
with confidence. Proceedings of ACM Conference on
Programming Language Design and Implication; 2006 Jun.
p. 169-80.

9. Mund GB, Mall R, Sarkar S. An efficient dynamic program
slicing technique. Department of Computer Science and
Engineering, IIT Kharagpur. 2002; 44(2):123-32.

http://dx.doi.org/10.1145/800020.808263
http://dx.doi.org/10.1145/53990.53994

Indian Journal of Science and Technology 7Vol 9 (40) | October 2016 | www.indjst.org

Preeti Sikka and Kulwant Kaur

10. Baah GK, Podgurski A, Harrold MJ. The probabilistic
program dependence graph and its application to fault
diagnosis. IEEE Trans Softw Eng. 2010 Jul; 36(4):528-45.

11. Bouteraa I, Bounour N. Towards The use of program slicing
in the change impact analysis of aspect oriented programs.
Proceedings International Arab Conference on Information
Technology (ACIT); Arabia Saudita. 2011.

12. Walkinshaw N, Strathclyde U, Glasgow UK, Roper
M, Wood M. Java system dependence graph.
Proceedings of 3rd IEEE International Workshop;

Amsterdam, Netherlands. 2003 26-27 Sept. p. 55-64.
Doi: 10.1109/SCAM.2003.1238031

13. Sikka P, Kaur K. Program slicing techniques and their
need in aspect oriented programming. International
Journal of Computer Applications. 2013; 70(3):11-4.
Doi: 10.5120/11941-7735

14. Zhang X, Gupta R, Zhang Y. Precise dynamic slicing
algorithms. 25th International Conference on Software
Engineering (ICSE’03); Portland. 2003 May. p. 319-29.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238031&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238031
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238031&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238031
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238031&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238031
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238031&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238031
http://dx.doi.org/10.1109/SCAM.2003.1238031
http://www.cs.orst.edu/icse2003

