
Abstract 
Objectives: To estimate the impact of the critical speed over the power collecting system for the electric trains. Methods/
Analysis: Two models regarding the critical speed estimation related to the resonance phenomenon in the pantograph-
­catenary system are studied: firstly, by the differential equation of the contact point trajectory, and secondly by the maximum 
kinetic energy and the maximum potential energy over a span. Simulations for the pantograph-catenary ­interaction at train 
speeds close to the critical ones are done. Tests for different speeds were realised on an experimental stand. Findings: 
Records of the pantograph-catenary system’s behavior show the influence of the critical speeds over the power ­collecting 
system and knowing the critical speeds on different trucks, it can be established the maximum speeds for the railway 
­vehicles. It is to observe that the critical speed depends strongly on the mechanical tensions in the contact line and on the 
linear mass of the contact line. Applications/Improvements: Two relationships were established for the critical speed, 
one considering mechanical tension into the wire and another considering the length span. A test bench was developed for 
the pantograph-catenary researches. 
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1.  Introduction 
The pantograph-catenary system assures all along the 
track the power supply for the traction motor and for 
the equipment of the electric trains. The catenary system 
is used from the beginning of the electric railway, being 
an efficient system, but it has some drawbacks. As the 
train speed increases, the current collecting complex-
ity increases too, due to some parameters such as: speed, 
train vibrations, catenary oscillations, aerodynamics, the 
catenary and pantograph construction, etc1. The prob-
lems regarding the contact between the pantograph and 
the contact wire are largely studied in the literature with 
important results, considering the pantograph-catenary 
models and simulations1,2. In3 it is assumed that the con-
tact occurring between contact strip and contact wire is 
mostly influenced by the dissipated power at the contact 
due to arcing, friction effect and Joule effect. Thermal 
problems of the contact are also important, in order to 

avoid the over-heating due to the high currents, being 
necessary to consider the analysis of the thermal model of 
electric contacts in electric rails system4,5. 

A limitation of the operational speed of trains is the 
wave propagation velocity on the contact wire C6, given 

by the relation ( )rr
p /2

2
TL

EIC +




= , where T 

is the tension of the contact wire, ρ is the contact wire 
mass per length unit, EI is the beam bending stiffness and 
L is the beam length. For high-speed catenaries, the sec-
ond term of the relation dominates the critical speed and 
the first term becomes negligible. When the train speeds 
approach the wave propagation velocity of the contact 
wire, the contact between the pantograph and the cat-
enary is harder to maintain due to the increasing in the 
amplitude of the catenary oscillations and to the bending 
effects. In order to avoid the deterioration of the contact 
quality, the current regulation imposes a limit to the train 
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speed of V = 0.7C6. Even for the foundation of the truck 
there are studies on the critical speeds, as in7,8. 

These critical speeds (above 200 m/s)7 are higher than 
for the contact wire but the results have direct application 
on estimates of ground vibrations induced by high-speed 
trains, and permit to evaluate the level of the additional 
loading factor to which high speed trains and tracks must 
be designed. Normally, train speed is less than 70% of the 
wave speed of the contact wire. If the vehicle’s operation 
speed approaches to the wave speed of the contact wire, 
the probability of loss of contact is increased. Because of 
this loss of contact accompanying electric arcs between 
them, the current collector system becomes seriously 
damaged. Therefore, it is very important to maintain a 
stable contact force between the catenary and the col-
lector plate of the pantograph. Because of the increasing 
interest in high-speed railway vehicles, the dynamic 
interaction between the catenary and the pantograph at 
high speeds has been studied extensively9. There are also 
studies regarding unconventional methods to supply the 
electric traction vehicles10. 

To study the pantograph-catenary interaction in real 
conditions, that is on trains, is difficult due to the high 
costs, the perturbation of the trains schedule, the neces-
sity to adapt the current collecting system to the necessity 
of the data acquisition. This is why there are used test 
benches for the researches11 using different systems for 
the pantograph-catenary interaction structure. 

In this paper we realise an analysis of the critical speed 
for the pantograph-catenary system considering different 
relations to estimate it. It is analyzed the mathematical 
model of the interaction pantograph-catenary by simula-
tions at the speeds of the train close to the critical speeds. 
On an experimental stand it is analyzed the interaction 
pantograph-catenary at critical speed. 

2.  Critical Speed Estimation 

2.1 � Critical Speed Estimation considering 
the Trajectory of the Contact Point

For the pantograph-catenary system it is important to 
estimate the differential equation of the trajectory of the 
contact point, with some simplified assumptions12,13: 

The pantograph-catenary structure is considered to 
be a system with elastic masses which are placed verti-
cally, one above another; the contact force will determine 
the variation of the height of the contact point linked 

to the kinetic energy of the masses. It is considered that 
the pantograph-catenary system has only one degree of 
freedom, which is in vertical direction; 

There are neglected the dynamic forces due to the 
vibrations; 

It is neglected the friction force between the contact 
wire and the skate of the pantograph; 

It is neglected the aerodynamic influence (the air drag, 
the lateral wind); 

The stiffness of the contact wire has a sinusoidal 
variation along a span; 

The contact force due to the mechanical system of the 
pantograph (the spring) is constant. 

Even considering these hypotheses, it is difficult 
to establish a mathematical model that reflects the 
phenomenon in its all complexity, because there are many 
parameters to estimate. Figure 1 presents the simplified 
model for the catenary and the pantograph. 

The mathematical model is described by the next 
relationships14: 

For the vertical movement of the catenary: •	

	
2

2
2c c k c

d y dy
m v b F k y

dxdx
+ = − � (1) 

For the vertical movement of the pantograph: 

	
2

2
02p k

d y
m v F F

dt
= − � (2)

From the equations (1) and (2) it results the differential 
equation of the trajectory of the contact point: 

	 ( )
2

2
02c p c c

d y dy
m m v b k y F

dxdx
+ + + = � (3)

Considering a sinusoidal variation over a span length for 
the mass of the catenary mc and the stiffness coefficient kc: 

Figure 1(a).  The catenary model. (b). The pantograph 
model.
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	 x
L

aay p2cos10 += � (10)

The formula for the critical speed vk results considering 
the conditions when the coefficient a0 and a1 become 
infinite (and also y). These conditions are fulfilled if the 
denominator of the a0 and a1 from the equation (9) are 
zero14. 

The relation for the critical speed is: 

	






 αα

−+
α−

π
=

2
1

2
11

2
0

02

km
c

c
kk

mM

k
.Lv .� (11)

2.2 � Estimation of the Critical Speed 
Considering the Kinetic Energy and the 
Potential Energy of the Contact Wire 

Another possibility to analyze the critical speed is based 
on the analysis of the maximum kinetic energy, respec-
tive the maximum potential energy for a length L of a 
span for the vertical movement of the pantograph-cate-
nary system, neglecting the influence of the dissipative 
forces. Thus, during the oscillations due to the force F0 
of the springs of the pantograph (which will lift the con-
tact wire), the contact wire could be considered to have a 
parabola shape. 

Thus, the total kinetic energy Ec, corresponding to the 
vertical movement of the catenary mass mc0 on the span 
length L , will be depicted as, 

	
2

2
0

1 2
2

L

c
dh dE
dt dx

 =   ∫ � (12)

where dh/dt represents the speed of motion of the mass of 
the catenary mc0dx at the distance x  from the centre. 

According to the Figure 2, for the lifting h  of a point 
from the contact line placed at the distance x from the 
middle of the span: 

	 




 −= 2

20
41 x
L

hh � (13) 

The oscillation of the contact line is considered to be 
a harmonic one16: 

 	 thh wsinmax00 = � (14)

where h0max is the amplitude of the oscillation in the 
middle of the span. 

	





 −= x

L
mm mcc

pa 2cos10
,			 

	 




 −= x

L
kk kcc

pa 2cos10 � (4)

where the coefficient of irregularity of the mass of the 
catenary αm and the coefficient of irregularity of the 
stiffness of the catenary αk are given by: 

	
minmax
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kk
kk

k +
−
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and 
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L
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The differential equation (3) becomes: 

	
2

2
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21 cosc c k
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Mv b k x y F
dx Ldx
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For the estimation of the critical speed it is proposed 
the solution14,15: 

	 x
L
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L

aay pp 2sin2cos 110 ++= � (8)

with:
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	 (9)

Considering the damping coefficient of the catenary 
as bc = 0, it results b1=0, and the relation (8) becomes: 



Critical Speed Impact over the Pantograph-Catenary System’s Behaviour

Indian Journal of Science and Technology4 Vol 9 (40) | October 2016 | www.indjst.org

For 0TT =  it is established as ξ =1. 

	 b) 
0

0
0 y

hF = ,� (18)

where ( ) ( )( )fTTLy +⋅⋅= 00 4/x  is considered 
constant, independent of F0. 

For the first case, the potential energy relationship can 
be written in the form of:

	 ( ) ( )max0 0 2
max 0 0 0max0

4 21 hf f
p

T T T T
E h dh h

L Lx x

+ +
= =∫ ,� (19)

and for the second case:

	 max 2
max 0 0 0max00 0
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2

h

pE h dh h
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= =∫ � (20)

Taking into account the equations (15) and (19), and 
the equations (15) and (20), it results
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+
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The frequency of the free oscillations can be described 
by:
1.	 Considering mechanical tension into the wires: 

	
0

0
)(

436,0

c

f
a m

TT
L

+
=n � (23)

2.	 Considering the length of the span: 

 	 ( )
0 0

10,218b
cm Ly

n = � (24)

Under these circumstances, critical speed can be 
described with the following relation: 

	 0
( ) ( )

0
0, 436 f

cr a a
c

T T
v L
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+
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or
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It is considered that the value of the maximum kinetic 
energy occurs when the contact wire passes through 
horizontal position ωt = kπ, (k = 0,1,2…). In these condi-
tions, the maximum kinetic Ecmax energy equation will be 
written as: 

 	
2

2 2 22
max 0 0max 0 0max20

4 41
15

L

c c cE m h x dx m Lh
L

w w
  = − =    ∫ �(15)

The maximum potential energy corresponds to the 
maximum value of the catenary displacement, which is 
for ωt =π/2+ kπ. If the force of motion F0 is a function of 
h0, the maximum potential energy will be: 

 	
max

max 0 00

h

pE F dh= ∫ � (16)

There are considered two situations: 

	 a) 
( )

x
14 0

00 L
TT

hF f+
= ,� (17)

where ξ is a damping coefficient due to the sectional static 
stiffness. 

(a)

(c)

(b)

Figure 2.  The forces acting on the catenary. (a) The 
catenary at standstill. (b) The shape of the catenary when 
the pantograph is on the middle of the span. (c) Catenary 
analysis for a distance x from the middle of the span.



Gabriel Chiriac, Dumitru Cuciureanu and Costica Nituca

Indian Journal of Science and Technology 5Vol 9 (40) | October 2016 | www.indjst.org

The contact force acting on the elastic system 
pantograph-catenary can be described by17:

	 { }0),()(max 121121 xxbxxkf  −+−= � (28)

During the transfer of the electric current from the 
contact wire to the pantograph, it is considered that the 
pantograph is in permanent contact with the wire cxx ≡1  
and thus, the contact force f will have positive values. In 
this context, according to the Figure 3, it can be written:


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

� (29)

where )()( tfty = is the contact force.

3. � Simulations of the Pantograph-
Catenary System for Critical 
Speeds

For a comparative analysis of the critical speeds established 
by the relations (11) and (26), there are considered the 
parameters with the following values: mc0 = 195 kg, mp = 
17.1 kg, kc0 = 7000 N/m, αm = 0.95, αk = 0.95, T0 = Tf = 20 
kN, h0 = 0.35 m, L= 60 m. The speeds are denoted as vk1 
for the relation (11), vk2 for the relation (26). 

The maximum values of the critical speeds are 
estimated as: vk1max = 73.92 m/s (266 km/h) and vk2max = 
69.44 m/s (233.7 km/h) shown in the Figure 4. 

It is to observe a low difference between the critical 
speeds values, resulting that the vehicle could run safely 
on such a contact line with lower speeds than the critical 

Since the stiffness from a span to another are different, 
(it is minimum in the front of the pillars and maximum in 
the middle of the span), when the pantograph passes under 
the contact wire, especially at high speed, the wire is influ-
enced by a mass force given by the alternative motions of 
the pantograph, resulting an oscillation of the wire16. In the 
case of the sinusoidal trajectory, for the low speed of the 
trains, the force of inertia is variable between minimum 
at the front of the pillars and maximum in the middle of 
the span. Considering the same simplified assumptions 
as above, in Figure 3 it is presented a model17-19, for the 
interaction between the pantograph and the catenary. 

The mechanical parameters characterizing the 
pantograph-catenary interaction in Figure 3 have peri-
odic variations along a span and can be described by the 
relationships (27), which represent a Fourier series of the 
parameters of the catenary, considering the second and 
the third harmonics: 
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Figure 3.  The model of the pantograph-catenary 
interaction.

Figure 4.  Variation of the critical speed Vk depending on 
the linear mass mc.
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considered that for this speed of the vehicle there are no 
problems regarding the power collecting on the vehicle. 

Figure 6 presents the variation of the parameters of 
the contact line on the same truck side. The speed of the 
pantograph is v = 150 km/h, which is below the critical 
speed. The maximum values for the stiffness coefficient of 
the contact line kc oscillate between the 19954 Nm s− and 

111170Nm s−  and a minimum of 14134Nm s− . 
The damping coefficient of the catenary bc oscillates 

with values between 1452.1Nm s−  and 1542Nm s− , with a 
minimum of 138.04Nm s− . The mass of the catenary has 
maximum values of 283.1 kg and 320 kg and a minimum of 
110 kg. In these conditions it results that the contact line has 
relatively constant amplitudes and the energy transfer from 
the line on the vehicle is achieved in good conditions. 

Figure 7 presents the variation of the param-
eters of the contact line on the same truck side. The 
pantograph has the critical speed given by the relation 

one. It has considered as reference speed the values for 
vk1 the Equation (11). So, it has been computed the errors 
for the speed vk2 which uses the Equation (26). From the 
errors computation it results for formula (26) the error 

2 1
1

1
100% 6.06%k k

k

v v
v

e
−

= ± ⋅ = − , which is a low 

value. 
It is also to observe that the critical speed depends 

strongly on the mechanical tensions in the contact line 
and on the linear mass of the contact line. Thus, an 
increasing of the tension will result in an increase of 
the critical speed. The critical speed also depends on 
inverse ratio with the mass of the catenary. The oscil-
lations of the contact line at the critical speed can be 
analyzed considering the model in Figure 3, the rela-
tions in (27) and the parameters with the following 

values: 0 195cm kg= , 1 100cm kg= , 2 20cm kg=

, 3 5cm kg= , 1
0 240cb Nm s−= , 1

1 240cb Nm s−= , 
1

2 50cb Nm s−= , 1
3 12cb Nm s−= , 1

0 7000ck Nm s−= , 
1

1 3360ck Nm s−= , 1
2 650ck Nm s−= , 1

3 160ck Nm s−=

, 2 7,6m kg= , 3 9,5m kg= , 1
1 5000b Nm s−=

, 1
2 20b Nm s−= , 1

3 5000b Nm s−= , 5 1
1 10k Nm s−= , 

1
2 3421k Nm s−= , 03 =k , NF 1000 =  17. 

Figure 5 presents the variation of the parameters of the 
contact line along the truck for a speed of v = 100 km/h, 
(below the critical ones). The stiffness of the contact line 
kc varies between a minimum of 4134 N/m⋅s and a maxi-
mum of 11170 N/m⋅s; the damping coefficient is between 
the 138.11Nm s−  and 1542Nm s−  and the catenary mass 
oscillates between 110 kg and 320 kg. These variations 
have constant amplitudes all along the truck and it can be 
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Figure 5.  Parameters variation of the contact line for a 
speed of v = 100 km/h.

Figure 7.  Parameters variation of the contact line for the 
speed vk1max= 266 km/h.
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Figure 6.  Parameters variation of the contact line for the 
speed v = 150 km/h.
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(8), vk1max = 266 km/h. From the graphics it results a 
variation of the amplitudes with a period time of T = 38s. 

The stiffness coefficient of the contact line kc has 
the same maximum and minimum ( 111170Nm s−  and 

14134Nm s− ) for t = 18 s, 56 s, 94 s, 132 s a.s.o.. For a 
period of time of T = 38s it has a different maximum and 
minimum, which are 18251Nm s−  and 14132Nm s− . The 
damping coefficient bc has the maximum and minimum 
as above ( 1542Nm s−  and 138.04Nm s− ) for the same 
moments in time (18 , 56 , 94 ,132 )t s s s s= . Also, for a 
period time of T =38 s, it has maximum and minimum 
values of 1327.1Nm s−  and 138.13Nm s− . The mass of 
the catenary has also a variation with the period time T 
=38 s, with values of 231.7 kg and 110.1 kg.

Considering these oscillations, the movement of the 
pantograph could not be considered being safe, because 
at any of these moments it could appear detachments 
between the collector head and the contact line, with neg-
ative effects in power collecting on the vehicle. With the 
above parameters, considering the model in Figure 3 and 
the relations (27-29), there are estimated the variation of 
the contact force, see Figure 8, and the variation of the con-
tact point, Figure 9, for a vehicle speed of 100 km/h and a 
critical speed of vk1max = 266 km/h. In Figure 8(a) and 8(b) 

it can be observed that the contact force oscillates around 
the values of 100 N, with a maximum of Fmax = 113.2 N 
and a minimum of Fmin = 85.78 N. 

(a) presents the lift of the contact point for a speed of 
the vehicle of 100 km/h, with positive variations between 
a minimum of x1min = 0.002 m and a maximum of x1max = 
0.032 m. Figure 9(b) shows the variation of the contact 
point for the critical speed of 266 km/h. In this case there 
is a lift of 0.01 m at t = 1.5 s, and after that it appears some 
oscillations with negative amplitudes. 

Thus, the contact point has a minimum of x1min = -0.014 
m and a maximum of x1max = 0.044 m. These negative val-
ues give the detachments of the collector head from the 
contact line with consequences in power collecting inter-
ruptions on the vehicle.

4. � Experimental Analysis of the 
Pantograph-Catenary System 
at Critical Speed 

An experimental stand was developed in order to study 
the pantograph-catenary system’s behaviour at different 
speeds shown in Figure 10. 

Figure 8.  Variation of the contact force. (a) v = 100 km/h; 
(b) vk1max = 266 km/h.
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Figure 9.  Variations of the contact point: (a) v = 100 km/h; 
(b) vk1max = 266 km/h.
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voltage ratio of 50A/5V. The voltage at the terminals of 
the traction motor was recorded on channel 2 (C2). The 
voltage signal was acquired by a voltage probe Hall LV 
100-100 type, with a voltage ratio of 100V/50mA. Using 
a 100 Ω standard resistance it results in a transform ratio 
of 100V/5V. The waveform of the contact voltage was 
recorded directly on channel 3 (C3). 

Figure 11 shows the experimental waveforms for 
current and voltage for the speed of 100 km/h. In this case 
the waveforms haven’t important variations: there are no 
important variations of the load current (Channel C1) 
and the voltage on the traction motor (Channel C2) and 
the voltage drop between the pantograph and the contact 
line (Channel C3). 

These waveforms have been recorded at the speed 
of 100 km/h, lower than the critical speed of 266 km/h, 
hence, at this speed; there are no risks of detachments of 
the collector head from the disk.

Figure 12 shows the experimental waveforms for 
current and voltage for the critical speed of vk1max = 266 
km/h. In this case the waveforms have important oscilla-
tions. It can be observed that there is no variation in the 
load current (Channel C1) but there are variations of the 
voltage of the motor (Channel C2). Also, it can be notice 
that the voltage across the pantograph and the contact 
line (Channel C3) has important variations, between 250 
mV and almost 2 V. Hence, at the same value of the load 

An asymmetrical pantograph, 1. At a scale of 1:4 as 
regarding a real system (a real pantograph used on an 
electric locomotive and the distance between the two con-
secutive droppers) is used. A rotating copper disk, 2. With 
a diameter of ΦCu = 477 mm and a thickness of gCu = 8 mm 
is used as a contact line. 3. The rotating disc is in contact 
with the graphite skate. The disc has an eccentricity and 
it is elastically fixed in order to reproduce the oscillations 
of the contact line. 

The disc is droved by an electric motor, 4. Controlled 
with a static converter for linear speeds vD corresponding 
from 0 to 75 km/h. For the scale 1:4 the maximum cor-
responds to a train speed of 300 km/h. It is to mention 
that the pantograph has the classical mechanical lifting 
(springs) system, 5. Used for the main lifting force. The 
pantograph model has a low inertia, a good lateral sta-
bility, a constant contact pressure for a specific height 
and a low wear of the carbon skate. As load it is used a 
model bogie, 6. With two D.C. traction motors. The speed 
of the vehicle is simulated by the rotation of the copper 
disk. Thus, for a speed of 100 km/h, the disk rotates with a 
speed of 1109.1 rot/min and for 266 km/h the disk rotates 
with 2959.7 rot/min. The disk is mounted with an eccen-
tric axle in order to reproduce closely the real contact 
line between two suspension points. Thus, it will result a 
sinusoidal trajectory of the contact point. 

With the aim of recording the current and voltage 
waveforms, a digital oscilloscope type LeCroy Wave Surf 
400 has been used. On the first channel (C1) the load cur-
rent has been recorded using a current probe Hall LA 55P 
type, with a transform ratio of 50A/50 mA. A resistance 
standard of 100 Ω was used, which, finally, resulted in a 

Figure 12.  Experimental waveforms for current and 
voltage at vk1max = 266 km/h.

Figure 11.  Experimental waveforms for current and 
voltage for v=100 km/h.

Figure 10.  Pantograph-catenary experimental stand.



Gabriel Chiriac, Dumitru Cuciureanu and Costica Nituca

Indian Journal of Science and Technology 9Vol 9 (40) | October 2016 | www.indjst.org

current, the contact resistance between the pantograph 
and the contact line increases and that means power 
losses at high values. 

The contact voltage has large variations because of 
the detachments between the collector head and the disk 
with the risk of occurring an electric arc between them. 
These tests show the influence of the critical speed over 
the pantograph-catenary system’s behaviour. 

5.  Conclusions
In order to provide a permanent contact between the 
collector head and the contact line the pantograph has to 
trace closely the contact line. Because of the contact force of 
the pantograph the contact wire is lifted up, and, in combi-
nation with the vehicle’s movement, it results a movement of 
the deformation of the contact line. This longitudinal defor-
mation of the contact line propagates along the truck as 
elastic waves. As the speed of the vehicle increases, there also 
increases the speed of the propagation of the deformation, 
approaching the critical speed of the catenary. 

This paper presents an analysis of critical speeds 
considering some models regarding the critical speed 
estimation on the pantograph-catenary system related to 
the resonance phenomenon in the pantograph-catenary 
system. A comparative analysis is also presented for the 
critical speed depending on the mechanical tensions in 
the contact wire and its mass. It was analyzed the math-
ematical model of the interaction pantograph-catenary 
and were performed simulations at the speeds of the train 
close to the critical speeds. The variations of the contact 
force, the damping coefficient of the catenary, the stiffness 
coefficient along a span of the catenary, and the mass of 
the catenary distributed along a span are analysed as sim-
ulations results. On an experimental stand it is analyzed 
the interaction pantograph-catenary at critical speed. 
Records of the pantograph-catenary system’s behaviour 
show the influence of the critical speeds over the power 
collecting system and knowing the critical speeds on dif-
ferent trucks, it can be established the maximum speeds 
for the railway vehicles. 

6.  References
1.	 Rachid A. Pantograph Catenary Control and Observation 

using the LMI Approach. 50th IEEE Conference on 
Decision and Control and European Control Conference 
(CDC-ECC); Orlando, FL, USA. 2011. p. 2287–92. 

  2.	 Collina A, Bruni S. Numerical simulation of 
pantograph-overhead equipment interaction: Vehicle system 
dynamics. Int J Veh Mech Mobility. 2002; 38(4):261–91. 

  3.	 Walters S, Rachid A, Mpanda A. On modelling and control 
of pantograph catenary systems. International Conference 
on Pantograph Catenary Interaction Framework for 
Intelligent Control (PACIFIC); Amiens, France. 2011 
Dec 8–9. 

  4.	 Plesca A. Thermal analysis of a traction system with double 
conducting points in steady state conditions. Electr Power 
Syst Res. 2013; 97:126–32. 

  5.	 Plesca A. Thermal analysis of sliding electrical contacts 
with mechanical friction in steady state conditions. Int J of 
Thermal Sciences. 2014; 84:125–33.

  6.	 Jorge A, Joao P, Manuel P, et al. A computational procedure 
for the dynamic analysis of the catenary-pantograph 
interaction in high-speed trains. J Theor Appl Mech. 2012; 
50(3):681–99. 

  7.	 Dimitrovova Z, Varandas JN. Critical velocity of a load 
moving on a beam with a sudden change of foundation 
stiffness: Applications to high-speed trains. Comput Struct. 
2009; 87: 1224–32. 

  8.	 Huang H, Chrismer S. Discrete element modelling of ballast 
settlement under trains moving at critical speeds. Constr 
Build Mater. 2013; 38:994–1000. 

  9.	 Lee JH, Kim YK, et al. Performance evaluation and design 
optimization using differential evolutionary algorithm of 
the pantograph for the high speed train. J Mech Sci Technol. 
2012; 26(10): 3253–60. 

10.	 Plesca A. Electric arc power collection system for electric 
traction vehicles. International Journal of Electrical Power 
and Energy Systems. 2014; 57:212–21. 

11.	 Bruni S, Bucca G, et al. Numerical and hardware-in-the-loop 
simulation of pantograph-catenary interaction. Pantograph 
Catenary Interaction Framework for Intelligent Control 
Conference (PACIFIC); Amiens, France. 2011 Dec 8–9. 

12.	 Nituca C. Probleme de captare a curentului in tractiunea 
electromecanica [Ph.D. thesis]. Romania: Romanian, 
Technical University of Iasi; 2003. 

13.	 Cantemir CG. Cercetari privind dinamica pantografelor 
asimetrice, (in Romanian) [Ph.D thesis]. Romania: 
Technical University of Iasi; 1997. 

14.	 Pasca N, Scorţeanu R. Influenţa diversilor parametri 
asupra traiectoriei punctului de contact dintre pantograf si 
catenars, la viteze mari de circulatie, studiata pe calculatorul 
analogic (in Romanian). Revista Transporturilor si 
Telecomunicatiilor. 1974; 4:210–5. 

15.	 Chen Z, Jian Z, Jidong H. The evaluation of the 
electromagnetic emission from high-speed railway 
by pantograph and network parameters. Asia-Pacific 
Conference on Environmental Electromagnetics 
(CEEM’2000); Shanghai, China. 2000 May 3-7. p. 279–84. 



Critical Speed Impact over the Pantograph-Catenary System’s Behaviour

Indian Journal of Science and Technology10 Vol 9 (40) | October 2016 | www.indjst.org

16.	 Turos G. Vehicule neconvenţionale de tractiune feroviara 
(in Romanian). Vol. 1. Timisoara: Traian Vuia IP, (editors). 
1976. p. 42. 

17.	 Cho YH. Numerical simulation of the dynamic responses 
of railway overhead contact lines to a moving pantograph, 
considering a nonlinear dropper. J Sound Vib. 2008; 
315:433–54. 

18.	 Mokrani N, Rachid A. A robust control of contact force of 
pantograph-catenary for the high-speed train. European 
Control Conference; Zurich. 2013 Jul 17-19. p. 4568–73. 

19.	 Pisano A, Usai E. Contact force estimation and regulation 
in active pantographs: An algebraic observability approach. 
Proceedings of 46th IEEE Conference on Decision and Control; 
New Orleans, Louisiana. 2007 Dec 12–14. p. 4341–6. 

Nomenclature
bc	 –	 Damping coefficient of the catenary; 
Ec	 –	 Kinetic energy of the catenary; 
Ecmax	–	 Maximum kinetic energy of the catenary; 
Epmax	–	 Maximum potential energy of the catenary; 
Fk	 –	� Contact force between the collector head and the 

contact wire; 
F0	 –	 Force of the resort of the pantograph; 
fq(t)	 –	� Control force on the lower arm of the 

pantograph;
fc(t)	 –	� Control force on the upper arm of the 

pantograph; 
h	 –	 Vertical amplitude of the contact wire; 

h0	 –	� vertical amplitude of the contact wire in the 
middle of the span; 

h0max	–	� maximum vertical amplitude of the contact wire 
in the middle of the span; 

kc	 –	 Stiffness coefficient along a span of the catenary; 
kc0	 –	 Medium stiffness coefficient; 
L	 –	� Distance between two successive suspensions of 

the catenary; 
M	 –	� The sum of the equivalent mass of the pantograph 

and of the contact wire;
mp	 –	 Total mass of the pantograph; 
mc0	 –	 Linear mass of the contact line; 
mc	 –	 Mass of the catenary distributed along a span; 
T0	 –	 Mechanical tension into the messenger wire in 

standstill; 
T	 –	� Mechanical tension into the messenger wire 

during the pantograph movement; 
Tf	 –	 Mechanical tension into the contact wire; 
v	 –	 Train speed; 
vk	 –	� Critical speed of the pantograph–catenary 

system; 
y0	 –	 Cross static elasticity of the contact wire; 
αm	 –	� Coefficient of irregularity for the mass of the 

catenary; 
αk	 –	� Coefficient of irregularity for the stiffness of the 

catenary; 
ν(a), ν(b)  – � Free oscillation frequency for the 

catenary. 


