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Abstract
Background/Objectives: GrahamHigman gave the idea of coset diagrams for
the action of modular group PSL(2,Z) on real quadratic irrationals. These spe-
cial types of graphical figures are composed of closed paths known as Circuits.
These circuits can be classified into certain types of even length with respect to
the number of inside\outside triangles. This study is to discuss different prop-
erties of reduced numbers in coset diagrams of the type (p,q).Methods: In this
study, we have investigated different properties of type (p, q) using reduced
quadratic irrationals and continued fractions. We have categorized reduced
numbers in accordance with their position in the real line. Distance between
two ambiguous numbers and reduced numbers is introduced in this article
which will help the reader to understand the structural significance of reduced
numbers in a circuit.Wehave explored different conditions underwhich certain
reduced numbers have the same circuit. Moreover, continued fractions have
been used to assist the foundation laid by modular group action and different
general results have been derived in this context. Findings: It was possible to
define new notions of equivalent, cyclically equivalent and similar circuits using
partitions of n and discuss various properties of reduced numbers included in
coset diagrams of circuits with length up to four.
Applications: This study helps us in classifying PSL (2, Z)-orbits of Q(

√
m)\Q =∪

k∈N Q∗(
√

k2m), where Q∗ (
√

n) = { a+
√

n
c :

(
a, a2−n

c , c
)
= 1}.

Keywords:Modular group; Coset diagram; reduced numbers; equivalence
classes.

1 Introduction
Our universe is full of unexplored beauties of nature which hide different symmetries
andpatterns in it. Scientists are continuously definingnewbounds to the existing knowl-
edge of numbers and figures and their relationships. Graphical methods were first used
in the theory of groups in (1). Graphical approach is considered as an outstanding way
of visualizing any abstract idea. Modular group also known as PSL(2, Z) is an eminent
group which is generated by two linear fractional transformations x : r → −1/r and
y : r → 1−1/r and satisfy the relations x2 = y3 = 1. A real quadratic irrational
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number is of the form χ +ϕ
√

n where χ ̸= 0 and Q(
√

n) = {χ +ϕ
√

n ; χ,ϕ ∈ Q} is known as real quadratic field. Graphical
representation of action ofmodular group is known as coset diagram and it was introduced by (2). A number ξ = (χ+ϕ

√
n )/ϑ

is said to be an ambiguous number if ξ
−
ξ = −1. It is proved in (3) and (4) that there are only finite number of such ambiguous

numbers for a particular n and these numbers are connected on a unique closed path known as circuit and that each orbit
contains a unique circuit, thus the number of disjoint orbits αG where α ∈ Q∗ (

√
n) is equal to the number of closed paths in

the coset diagram under the action of−. This action of modular group on different subsets has been discussed by Malik in (5)

and calculated the exact cardinality of ambiguous numbers in a coset diagram. In 2018, Malik & Sajjad in (6) and (7) discussed
different types of even lengths in coset diagram. Distinct homomorphic images are obtained by contraction of vertices in coset
diagram in (8). Reader may look (9) a book on number theory for in depth knowledge of the work. Reduced number is defined
as a real quadratic irrational number ξ with ξ > 1

and−1<
−
ξ < 0. A circuit has type (l1, l2, l3, . . . , l2p) if there are l1 outside triangles and l2 inside triangles in the circuit and so

on l2p triangles inside the circuit. We use reduced numbers as initial points in the construction of a circuit in the coset diagram
which later help us to accurately decide the type of that circuit. We use above mentioned technique to make coset diagrams
and corresponding circuits of length two and four that is also in line with repeated part of continued fraction expression of a
reduced number. It is pertinent to mention here that the length of a G-circuit in coset diagram is a different phenomenon to the
length of a path in a graph. Transitive G-subsets (G-orbits) are fundamental to the study of G-subsets, thus classification of G-
orbits is actually the classification of circuits. In this paper, an attempt has beenmade to attack this long standing problem and to
address in detail all the circuits of length four. It is easy to see that there are precisely two classes of equivalent circuits of length 2
namely [l1, l1] and [l1, l2]. Throughout this paper, a circuit means a G-circuit unless stated otherwise. We have developed results
about the relationship of type of circuit and quadratic irrationals. Throughout this paper, a closed circuit of type (p, q) means
that there are p number of triangles outside the circuit and q number of triangles inside the circuit. Moreover the behaviors of
different ambiguous numbers and reduced numbers, in this particular type (p,q) will be discussed as real numbers and in the
context of continued fractions.

2 Continued fractions and the type (p, q)

A circuit of type (p,q) is generated by reduced number ξ = (pq+
√

p2q2 +4pq)/2p which is in fact fixed by (xy2)
p
(xy)q as

every outside triangle is actually due to the transformation xy2 and every inside triangle is due to the transformation xy moving
in counter clockwise direction. It can be verified easily by definitions of x and y that ξ (xy2)

p
= ξ/(pξ +1) and ξ (xy)q = ξ +q.

Thus reduced number in the circuit of type (p,q) is determined by working out ξ (xy2)
p
(xy)q = ξ . Continued fractions are used

to authenticate the type of a circuit using ξ as recurrent part of continued fraction of ξ is every time −
pq, that can be checked

from (10).
We now divide all the circuits of type (p,q) into three genres.

2.1 Genre A

Let p and q be different positive integers then all circuits of type (p,q) in Q∗(
√

p2q2 +4pq) are said to be of genre A, we say

ξ1=
pq+

√
p2q2+4pq
2p which is the reduced number of this genre.

2.2 Genre B

Let p and q be different positive integers then all circuits of type (q, p) in Q∗(
√

p2q2 +4pq) are said to be of genre B, we say

ξ2=
pq+

√
p2q2+4pq
2q which is the reduced number of this genre.

2.3 Genre C

Let p be a positive integer then all the circuits of type (p, p) in Q∗(
√

p2 +4) are said to be of genre C, we say ξ3=
p+
√

p2+4
2

which is the reduced number of this genre.
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2.4 Ambiguous distance

The Shortest number of edges linking two ambiguous numbers, say a and b, in a circuit is called ambiguous distance which is
denoted by d(a,b).

It has been able to establish the connection between reduced numbers of above three genres.

Theorem 2.5. Let ξ1 and ξ2 be reduced numbers of genre A and B then −
−
ξ1and −

−
ξ2 occur in the same circuit. Mathemat-

ically,

(ξ1)
G = (−

−
ξ 1)

G
(1)

(ξ2)
G = (−

−
ξ 2)

G
(2)

Proof: We move p outside triangles from ξ1 in anticlockwise direction. Consider ξ1(xy2)
p
= ξ1

pξ1+1 =
pq−

√
p2q2+4pq
−2p = −

−
ξ1

Hence the result.
Similar can be done for ξ2.

Theorem 2.6.Ambiguousdistance between ξ1 and
−
ξ 2 as well as ξ2 and

−
ξ 1 is one. Precisely,

(ξ1)x =
−
ξ2

(1)

(ξ2)x =
−
ξ1

(2)

Proof: By definition, (ξ )x = −1
ξ =⇒ (ξ1)x = −2p

pq+
√

p2q2+4pq
= pq−

√
p2q2+4pq
2q =

−
ξ2

ξ1 and
−
ξ2 are linked by only one transformation therefore d(ξ1,

−
ξ2) = 1.

Similarly (ξ2)x =
−
ξ1 can be proved easily.

Remark 2.7. It is straightforward from theorem 2.6.

(ξ1)
G = (

−
ξ2)

G
(1)

(ξ2)
G = (

−
ξ1)

G
(2)

Theorem 2.8 . Ambiguousdistance between−ξ1 and −
−
ξ 2 as well as −ξ2 and −

−
ξ 1 is one. Hence

(−ξ 1)x =−
−
ξ2

(1)

(−ξ 2)x =−
−
ξ1

(2)

Proof: By definition, −ξ 1=
pq+

√
p2q2+4pq
−2p =⇒(−ξ1)x = 2p

pq+
√

p2q2+4pq
= −pq+

√
p2q2+4pq

2q = −
−
ξ2.

It is clear that (p,q) and (q, p) are only circuits of length two for different positive integers p and q. The exact structures of
both circuits are clear from [Figure 1] and [Figure 2].

Theorem 2.9. For p > q, in Genre A and Genre B,

d(−ξ2, ξ1) = 2q+1 (1)

https://www.indjst.org/ 1460
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Fig 1. Coset diagram of type (p,q)

Fig 2. Coset diagram of type (q, p)

d(−ξ1, ξ2) = 2q−1 (2)

(−ξ2
−
ξ2) = d(ξ1 −

−
ξ1) = 2q. (3)

Proof: (i ) It is clear from [ Figure 1] that q triangles are 2q− 1 distance apart given that we measure distance between the
corners. Since p > q therefore the shortest distance is measured from the side of q triangles (either inside or outside), which
includes two more x edges to complete the path between −ξ 2 and ξ1.

(ii) Straightforward from proof of (i

https://www.indjst.org/ 1461
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(iii) Again from [ Figure 1] and [ Figure 2], for p > q the shortest path includes q triangles and one x edge.
Corollary 2.10. For p < q, in Genre A and Genre B
(i) d(−ξ 2, ξ1) = 2p+1.

(ii) (−
−
ξ1 ,

−
ξ2)= 2p−1

(iii) (−ξ 2 ,
−
ξ2) = d(ξ1, −

−
ξ1) = 2p.

Theorem 2.11.For reduced number ξ3of Genre C we have (ξ 3)
G = (

−
ξ3)

G

= (−ξ3)
G = (−

−
ξ3)

G

.
Proof: By definition,

x(ξ3) =
−
ξ3 And x(−ξ 3) =−

−
ξ3

−
ξ3(xy2)

p
= ξ3

1+pξ3
=−ξ3

also
−

−
ξ3(xy)p = p−

−
ξ3 = ξ3

Corollary 2.12. In Genre C,

(i ) d(ξ3, −ξ3) = d(−ξ 3,−
−
ξ3) = 1

(ii ) d(
−
ξ3, −ξ3) = d(ξ3,−

−
ξ3) = 2p−1

Proof: It is obvious from [ Figure 3 ] and proof of theorem 2.11 and theorem 2.9.

Fig 3. Coset diagram of type (p, p)

Following theorem will elaborate some properties of genre C.
Theorem 2.13. For ξ3 and non-zero positive integer p the following statements are equivalent.
(a) As a real number the whole part of ξ3 is p.
(b) The numeric part of continued fraction of ξ3 is p

(c) p < ξ3 =
p+
√

p2+4
2 < p+1

(d) For any non-zero positive integer p
p <

√
p2 +4 < p+2.

Proof:We will only prove (c) by contradiction others are obvious.
First suppose p >

√
p2 +4 squaring both sides

p2 > p2 +4 Which is false.
Secondly suppose

√
p2 +4 > p+2 again squaring both sides p2 +4 > p2 +4+4p which is also not true for positive p.
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Remark 2.14. Since the repeated part of continued fraction shows the type of corresponding closed-circuit, from the above
theorem it can be concluded that the continued fraction of ξ3 is [p;

−
p].

[ Table 1 ] shows continued fractions of some numbers of genre C for p = 3.

Table 1. Continued fractions of Genre C
Sr. No Number in Coset diagram Continued fraction

1 1+
√

13
2 [2;

−
3]

2 ξ3 =
3+

√
13

2 [3;
−
3]

3 5+
√

13
2 [4;

−
3]

4 1+
√

13
6 [0;1,

−
3]

5 7+
√

13
6 [1;1,

−
3]

6 5+
√

13
6 [1;2,

−
3]

Theorem 2.15. Let q be a non-zero positive integer and (1,q) be the type of circuit of genre A then q < ξ1 < q+1 for all q.

Proof : ξ1 =
q+
√

q2+4q
2 for the type (1,q)

On contrary suppose that ξ1 > q+1

Then q+
√

q2+4q
2 > q+1√

q2 +4q > q+2
q2 +4q > q2 +4+4q
Gives 4 < 0 which is false.
Similarly suppose on contrary q > ξ1
Gives 4q < 0 which is false for non-zero positive q. Hence, the result.
This shows that for any particular type (1,q) the corresponding reduced number has an upper and lower bound depending

on q.
Corollary 2.16. Let p be a non-zero positive integer and (p,1) be the type of circuit of genre A then 1 < ξ1 < 2 for all p.
Proof:On contrary suppose ξ1 > 2 then
p+
√

p2+4p
2p > 2 gives 4p(2p−1)< 0 which is false for non-zero positive p.

Similarly suppose ξ1 < 1 then p < 0 which is again not true hence the result.
Now it can be generalized that our result regarding the location of reduced quadratic irrational number occurring in the

closed-circuit of length 2 on real line for genre A.
Now it will be possible to derive a general result.
Theorem 2.17. Let p and q be two non-zero positive integers in the type (p,q) of genre A then q < ξ1 < q+1 for all q.
Proof: Suppose on contrary ξ1 > q+1
Then pq+

√
p2q2 +4pq > 2pq+2p

Gives q > p+ pq which in not possible for non-zero positive integral values of p and q.
Also, if q > ξ1 then pq >

√
p2q2 +4pq then 4pq < 0 which is not true for non-zero positive integral values of p and q.

Corollary 2.18. Let p and q be two non-zero positive integers in the type (q, p) of genre B then p < ξ2 < p+1 for all q.
Proof: It is straightforward from the proof of above theorem.
Therefore, conclusion can be derived that for any type of length two the reduced number has specific limits as a real number.
Nowwe take a specific interval of length, one on real line, it becomes interesting to knowhowmany distinct reduced numbers

can have in this particular unit the interval.
Theorem 2.19. For any non-zero positive integer α > 1, there are infinite reduced numbers in closed interval [α,α +1].
Proof: It is clear from theorem 2.17 that taking q = α the corresponding reduced number will be always between α and

α +1 regardless any value p. For infinite values of p there will be infinite reduced numbers in the close interval (α,α +1] .
Remark 2.20. There will be a unique reduced number in each unit interval of real line [α,α + 1] with α > 1 of genre C,

namely ξ3 with p = α
It is clear from the definition of reduced number that every reduced number lies between (1,+∞) and using above remark

it can be classified by these reduced numbers with respect to their position on real line by considering the reduced number of
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genre C in type (p, p) and generalize the results by taking types (p, p+1) ,(p, p+2) , . . . ,(p, p+ r) where q = p+ r for any
positive integer r.

Theorem 2.21. For fixed positive integers r and p there is a unique reduced number in the interval (p+ r, p+ r+1]for the
coset diagram of type (p, p+ r) .

Proof: combining the above remark with theorem 2.19, results can be obtained.

3 Equivalence classes and classification of g-circuits of length four
In this section, group of permutation is used to classify G-circuits therefore, square brackets represent the type of G-circuit and
round brackets to represent permutations. P(n) denotes the number of partitions of n whereas Dn stands for dihedral group of
order 2n and Sn stands for symmetric group of order n!. It is easy to see that (Sn| = n! = (n−1)!

2 ×2n = (An−1|× (Dn|. Reader
may see any book on number theory and statistics for in depth knowledge of the work.

We now formally define the notion of equivalent, cyclically equivalent and similar circuits in G-orbits of Q(
√

m)\Q.
Definition 3.1.1 : Two circuits are said to be equivalent if they differ only by the order of arrangement. i.e.
If {a1, a2, . . . ,a2m} are positive integers then circuit [a1,a2, . . . ,a2m] ∼ [aθ(1),aθ(2), . . . ,aθ(2m)] if and only if θ ∈ S2m. In

other words permuting entries a1,a2, . . . ,a2m of a circuit gives us equivalent circuits.
Definition 3.1.2 : Let [a1,a2, . . . ,a2m] be a circuit then regarding circular order of the positive integers a1,a2, . . . ,a2m if we

start from any of these integers and adopt clockwise or counter clockwise direction, the 4m circuits so obtained are all said to
be cyclically equivalent. In particular

[a1,a2, . . . ,a2m]∼c [aθ(1),aθ(2), . . . ,aθ(2m)] if and only if θ ∈D2m.Mathematically, (a1,a2, . . . ,a2m]∼c [a2,a3, . . . ,a2m,a1] · · · ∼c
[a2m,a1,a2, . . . ,a2m−1]∼c [a2m, . . . ,a2,a1]

∼c [a2m−1, . . . ,a1,a2m] · · · ∼c [a1,a2m, . . . ,a2].
Definition 3.1.3 : Two equivalent circuits are said to be similar if they correspond to the same circuit. Mathematically we

write [a1,a2, . . . ,a2m]∼s [a3,a4, . . . ,a2m,a1,a2] · · · ∼s [a2m−1,a2m, . . . ,a2m−2].
We have proved that there are exactly four classes of equivalent circuits of length 4 namely [a1,a2,a3,a4], [a1,a1,a2,a3],

[a1,a1,a1,a2] and [a1,a1,a2,a2]where a1, a2, a3 and a4 are different positive integers and four equivalent circuits [a1,a2,a3,a4],
[a2,a1,a3,a4] and [a1,a3,a2,a4] corresponds to the orbits contained in Q∗ (√n2

)
, Q∗(

√
n3) and Q∗ (√n1

)
respectively.

Now reversion towards the application and physical interpretation in this area of research with a consideration of finding
non-equivalent circuits of length q.

Given the integer q, we say the sequence of positive integers q1, q2, . . . ,qr, q1 ≤ q2 ≤ ·· · ≤ qr constitute a partition of q if
q = q1 +q2 + · · ·+qr. Let P(q) denote the number of partitions of q. Let’s determine P(q) for small values of q:

P(1) = 1 since 1=1 is the only partition of 1,
P(2) = 2 since 2 = 2 and 2 = 1+1,
P(3) = 3 since 3 = 3, 3 = 2+1, 3 = 1+1+1,
P(4) = 5 since 4 = 4, 4 = 3+1, 4 = 2+2, 4 = 2+1+1, 4 = 1+1+1+1,
Some others are P(5) = 7, P(6) = 11, P(61) = 1121505. There are large mathematical literature on P(q) . Following is the

crucial and elementary result.
The number of non-equivalent circuits of length two are only 2. For the circuit of length 2, P(2) = 2 where 2 = 1+ 1 and

2 = 2 corresponds to the circuits [a1,a2] and [a1,a1] respectively.
It is interesting to note that a circuit of length 2 corresponding to the partition 2 = 2 whereas, circuit with this pattern with

length greater than or equal to four is not possible. see (4)

Lemma 3.1.4.The number of classes Eq of equivalent circuits with length q, q ≥ 4 are precisely P(q)−1.
Proof: Every time in determining all non-equivalent circuits of length q, a partition can be obtained for q in the sense that if

q entries are appearing in the circuit of length q = q1 +q2 + · · ·+qk for which q1 are alike, q2 are alike,…, qk are alike. We shall
say that a circuit of length q has the circuit decomposition {q1, q2, . . . , qk} if it involves q entries for which q1 are alike, q2 are
alike,…, qk are alike. Thus, the number of non-equivalent circuits are equal to P(q)−1 as (a1,a1,a1, . . . ,a1) is not possible for
circuits of length q ≥ 4, see [4].

Since we have such an explicit description of determining the non-equivalent circuits of length q. Therefore, in this paper
we define all the classes of circuits of the length 4 with a1, a2, a3, a4 as different positive integers as mentioned below.

1. E[a1,a2,a3,a4]

2. E(a1,a1,a2,a3]

3. E(a1,a1,a1,a2]

4. E[a1,a1,a2,a2]
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Hence, all the circuits of length 4 are E = E[a1,a2,a3,a4]
∪

E(a1,a1,a2,a3]
∪

E(a1,a1,a1,a2]
∪

E[a1,a1,a2,a2] . It is possible to find all
the equivalent classes of length four against each above defined class.

3.2. Equivalent circuits ofE [a1,a2,a3,a4]

Theorem 3.2.1. Consider a1,a2,a3,a4, be different positive integers then we have 24 equivalent circuits corresponding
to E[a1,a2,a3,a4].

Proof: We use permutations to prove that there are exactly 24 circuits corresponding to a1,a2,a3,a4.
For the number of possibilities of selecting r distinct objects from n objects, where the order of arrangements is considered,

are nPr =
n!

(n−r)! .
The number of different arrangements of n objects of which n1 are alike, n2 are alike,…, nk are alike is n!

n1!n2!...nk! where
n1 +n2 + · · ·+nk = n

Therefore, for [a1,a2,a3,a4] we have 4P4 = 4! = 24 equivalent circuits.
We claim that all above twenty-four circuits are divided in three sub classes of equivalent circuits called classes of cyclically

equivalent circuits. This claim is proved in the following theorem.
Theorem 3.2.2. There are three classes Ec

[a1,a2,a3,a4],E
c
[a2,a1,a3,a4] and Ec

[a1,a3,a2,a4]of cyclically equivalent circuits of length
4 in E[a1,a2,a3,a4].

Proof: Let a1,a2,a3,a4 be different positive integers. It is well-known that group of rotational symmetries of a cube is iso-
morphic to the Symmetric group S4 and the circuits which are cyclically equivalent are obtained by [aθ(1),aθ(2),aθ(3),aθ(4)] for
each θ ∈ A3, since the order of A3 is 3 therefore for each θ there are three classes of cyclically equivalent circuits.

Corollary 3.2.3. For each class of cyclically equivalent circuits there is a unique n in Q∗(
√

n). Thus there are 3 orbits of (say)
n2 which corresponds to Ec

[a1,a2,a3,a4], n1 which corresponds to Ec
[a1,a3,a2,a4] and n3 which corresponds to Ec

[a2,a1,a3,a4].
Proof: It is proved in (6) that all cyclically equivalent circuits belong to the same orbit of Q∗(

√
n).

We prove the relationship between n1,n2 and n3 in the next sections of this paper.
Corollary 3.2.4. Each class Ec

[a1,a2,a3,a4],E
c
[a2,a1,a3,a4] and Ec

[a1,a3,a2,a4] of cyclically equivalent circuits contain 8 cyclically
equivalent circuits.

Proof: Let a1,a2,a3,a4 be different numbers and so these circuits are [aθ(1),aθ(2),aθ(3),aθ(4)] for each θ ∈ S4 as shown in
Tables 2 and 3.

Table 2. First cyclically equivalent class Ec
[a1,a2,a3,a4]

θ ∈ D4 [aθ(1),aθ(2),aθ(3),aθ(4)]

(1)(2)(3)(4) [a1,a2,a3,a4]

(1234) [a2,a3,a4,a1]

(13)(24) [a3,a4,a1,a2]

(1432) [a4,a1,a2,a3]

(12)(34) [a2,a1,a4,a3]

(14)(23) [a4,a3,a2,a1]

(24) [a1,a4,a3,a2]

(13) [a3,a2,a1,a4]

Table 3. Second and third cyclically equivalent class Ec
[a2,a1,a3,a4] & Ec

[a1,a3,a2,a4]

θ ∈ (23)D4 [aθ(1),aθ(2),aθ(3),aθ(4)] θ ∈ (12)D4 [aθ(1),aθ(2),aθ(3),aθ(4)]

(23) (a1,a3,a2,a4] (12) (a2,a1,a3,a4]

(134) (a3,a2,a4,a1] (234) (a1,a3,a4,a2]

(1243) (a2,a4,a1,a3] (1324) (a3,a4,a2,a1]

(142) (a4,a1,a3,a2] (143) (a4,a2,a1,a3]

(14) (a4,a2,a3,a1] (1423) (a4,a3,a1,a2]

(123) (a2,a3,a1,a4] (132) (a3,a1,a2,a4]

(1342) (a3,a1,a4,a2] (34) (a1,a2,a4,a3]

(243) [a1,a4,a2,a3] (124) [a2,a4,a3,a1]

It is interesting to see that in this case S4 = {D4, (12)D4, (23)D4}
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These twenty-four circuits in 3 classes can be written depicted by

Ec
[a1,a2,a3,a4] = (a1,a2,a3,a4]∼c (a2,a3,a4,a1]∼c (a3,a4,a1,a2]∼c (a4,a1,a2,a3]∼c

(a4,a3,a2,a1]∼c (a3,a2,a1,a4]∼c (a2,a1,a4,a3]∼c [a1,a4,a3,a2]

Ec
[a2,a1,a3,a4] = (a2,a1,a3,a4]∼c (a1,a3,a4,a2]∼c (a3,a4,a2,a1]∼c (a4,a2,a1,a3]∼c

(a4,a3,a1,a2]∼c (a3,a1,a2,a4]∼c (a1,a2,a4,a3]∼c [a2,a4,a3,a1]

Ec
[a1,a3,a2,a4] = (a1,a3,a2,a4]∼c (a3,a2,a4,a1]∼c (a2,a4,a1,a3]∼c (a4,a1,a3,a2]∼c

(a4,a2,a3,a1]∼c (a2,a3,a1,a4]∼c (a3,a1,a4,a2]∼c [a1,a4,a2,a3].
Such that E[a1,a2,a3,a4] = Ec

[a1,a2,a3,a4]
∪

Ec
[a2,a1,a3,a4]

∪
Ec

[a1,a3,a2,a4].
Remark 3.2.5. Let D4 be the dihedral group of order 8 and αD4,α ∈ S4 be a right coset of D4 then

Ec
(a1,a2,a3,a4] =

(
[aθ(1),aθ(2),aθ(3),aθ(4)

]
, θ ∈ D4}

Ec
[a2,a1,a3,a4] =

(
[aθ(1),aθ(2),aθ(3),aθ(4)

]
, θ ∈ (12)D4}

Ec
[a1,a3,a2,a4] =

(
[aθ(1),aθ(2),aθ(3),aθ(4)

]
, θ ∈ (23)D4}.

Next corollary will classify G-orbits of Q(
√

m)\Q having circuits of length 4.
Corollary 3.2.6.
All the circuits in Ec

[a1,a2,a3,a4], Ec
[a2,a1,a3,a4] and Ec

[a1,a3,a2,a4] corresponds to the orbits contained in Q∗(
√

n2),
Q∗(

√
n3) and Q∗ (√n1

)
respectively, where

n1 = (a1a3)
2 +(a1a4)

2 +(a2a3)
2 +(a2a4)

2 +(a1a2a3a4)
2 +2a2

1a3a4 +2a1a2
2a2

3a4 +2a2
1a2

3a2a4 +2a1a2a2
4 +2a2

1a2
4a2a3 +

2a1a3a2
2a2

4 +2a3a2
2a4 +4a1a4 +4a2a3 +4a1a3 +4a2a4 +8a1a2a3a4

n2 = (a1a2)
2 +(a1a4)

2 +(a2a3)
2 +(a3a4)

2 +(a1a2a3a4)
2 +2a2

1a2a4 +2a1a2
2a2

3a4 +2a2
1a2

2a3a4 +2a1a3a2
4 +2a2

1a2
4a2a3 +

2a1a2a2
3a2

4 +2a2a2
3a4 +4a1a4 +4a2a3 +4a1a2 +4a3a4 +8a1a2a3a4

n3 = (a1a2)
2 +(a2a4)

2 +(a1a3)
2 +(a3a4)

2 +(a1a2a3a4)
2 +2a2

2a1a4 +2a2a2
1a2

3a4 +2a2
1a2

2a3a4 +2a2a3a2
4 +2a2

2a2
4a1a3 +

2a1a2a2
3a2

4 +2a1a2
3a4 +4a2a4 +4a1a3 +4a1a2 +4a3a4 +8a1a2a3a4

Proof: It is proved in (6) that a circuit [p,q,r,s]of length four corresponds to the orbits contained in (pq+ ps+ rs−qr+ pqrs)2+
4(p+ r+ pqr)(q+ s+qrs).

We put p = a1, q = a2, r = a3 and s = a4 above and after simplification we get the result for n2.
Similarly, we can prove it for n1 and n3 with the corresponding change of variables.
Moreover, all the circuits in Ec

(a1,a2,a3,a4], Ec
[a2,a1,a3,a4] and Ec

[a1,a3,a2,a4], n2,n3 and n1remains invariant
under all the θ ∈ D4, θ ∈ (12)D4 and θ ∈ (23)D4 respectively.
Now we explore three more possible circuits of length four in Q∗(

√
n) in which all the four positive integers need not to be

distinct.
3.3. Equivalent circuits of E [a1,a3,a2,a4]

Following results can be easily deduced from subsection 3.2.
Corollary 3.3.1. Consider the circuit [a1,a1,a2,a3] then we have the following two classes of 12 equivalent circuits namely

Ec
(a1,a1,a2,a3]

= (a1,a1,a2,a3]∼c (a3,a2,a1,a1]∼c (a1,a2,a3,a1]∼c (a1,a3,a2,a1]

∼c (a2,a3,a1,a1]∼c (a1,a1,a3,a2]∼c (a3,a1,a1,a2]∼c (a2,a1,a1,a3]
Ec
(a1,a2,a1,a3]

= (a1,a2,a1,a3]∼c (a3,a1,a2,a1]∼c (a2,a1,a3,a1]∼c [a1,a3,a1,a2]

Proof: We have 4!
2! = 12 different circuits of length 4.
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Corollary 3.3.2. All the circuits in Ec
(a1,a1,a2,a3]

and Ec
(a1,a2,a1,a3]

corresponds to the orbits contained in Q∗(
√

n4) and
Q∗(

√
n5) respectively where

n4 = a4
1+(a1a3)

2+(a1a2)
2+(a2a3)

2+(a2
1a2a3)

2
+2a3

1a3+2a3
1a2

2a3+2a4
1a2a3+2a2

3a1a2+2a3
1a2a2

3+2a2
1a2

2a2
3+2a2

2a1a3+
4a1a3 +4a1a2 +4a2

1 +4a2a3 +8a2
1a2a3

n5 = 2(a1a2)
2 +4(a1a3)

2 +
(
a2

1a2a3
)2

+12a2
1a2a3 +4a2

2a3
1a3 +4a3

1a2
3a2 +8a1a3 +8a2a1

Proof : Replacement of a2 by a1, a3 by a2 and a4 by a3 in the expression of n2 and get the required result. Similar can be done
for other 7 circuits in the Ec

(a1,a1,a2,a3]
bymaking suitable substitutions in the expression of n2, getting the same result every time,

i.e. n4. For second part of the result, replacement can be done for a3 by a1 and a4 by a3 in the expression of n2 which on simpli-
fication gives n5. Similar can be done for other 3 cyclically equivalent circuits of Ec

(a1,a2,a1,a3]
by making suitable substitutions

in the expression of n2, getting the same result every time i.e. n5.
3.4. Equivalent circuits of E [a1,a3,a2,a4]

Corollary 3.4.1. Consider the circuit [a1,a1,a1,a2] then we have the following class of 4 equivalent circuits
Ec
[a1,a1,a1,a2]

= (a1,a1,a1,a2]∼c (a1,a1,a2,a1]∼c (a1,a2,a1,a1]∼c [a2,a1,a1,a1].
Proof: From the permutation theory we have 4!

3! = 4 circuits which are 4 possible permutations of four elements in which 3
are same.

Corollary 3.4.2. All the circuits in Ec
[a1,a1,a1,a2]

corresponds to the orbits contained in Q∗(
√

n6) where
n6 = 2a4

1 +4a2
1a2

2 +4a4
1a2

2 +4a5
1a2 +a6

1a2
2 +12a3

1a2 +8a2
1 +8a1a2

Proof:We replace a2 and a3 by a1 and replace a4 by a2 in the expression of n2 to get the desired result. Similar can be proved
for other equivalent circuits of this class.

3.5. Equivalent circuits of E [a1,a3,a2,a4]

Corollary 3.5.1. There is only one class of cyclically equivalent circuits Ec
[a1,a1,a2,a2]

in E[a1,a1,a2,a2] containing 4 circuits.
Proof: we have 4!

2!2! = 6 but the circuits [a1,a2,a1,a2] and [a2,a1,a2,a1] failed to exist in length 4.
Hence Ec

[a1,a1,a2,a2]
= (a1,a1,a2,a2]∼c (a1,a2,a2,a1]∼c (a2,a2,a1,a1]∼c [a2,a1,a1,a2].

Corollary 3.5.2. All the circuits in Ec
[a1,a1,a2,a2]

corresponds to the orbits contained in Q∗(
√

n7) where
n7 = a4

1 +10a2
1a2

2 +a4
2 +a4

1a4
2 +2a3

1a2 +2a4
1a2

2 +2a2
1a4

2 +4a1a3
2 +4a3

1a3
2 +4a2

1 +8a1a2 +4a2
2.

Proof: Replacement of a2 by a1 and a3,a4 by a2 in n2 to get the required formation of n7. It can be proved that n7 is same
for all the four circuits in Ec

[a1,a1,a2,a2]
. For substitute a3 by a2 and a4 by a1 in the expression for n2, we have n7. Similar result

can be proved by making suitable substations in the expression involving n2 to get the desired results.
[Table 4] shows the complete classification of circuits of length four.
Remark 3.5.3. Twelve equivalent circuits in corollary 3.3.1 are isomorphic to 12 elements of Alternating group A4.
This is now clear from [Table 4] that for all 44 circuits of length 4, we obtain only 7 corresponding values of n.

4 Classification of n in Q∗(
√

n) in circuits of length four
It is clear from [Table 3] that there are only two classes of equivalent circuits which corresponds to more than one orbits
of Q∗(

√
n) namely E[a1,a2,a3,a4] and E[a1,a1,a2,a3] which raises an obvious question about the order of these numbers. Next

two theorems will answer this question.
Theorem 4.1. Let a1,a2,a3,a4 be positive integers such that 0< a1 < a2 < a3 < a4.Then the three equivalent but not similar

classes Ec
[a1,a2,a3,a4], Ec

[a1,a3,a2,a4] and Ec
[a2,a1,a3,a4] correspond to the orbits contained in Q∗(

√
n2), Q∗(

√
n1) and Q∗(

√
n3)

respectively with
n1 < n2 < n3
Proof: To prove the above result we suppose that a2 = a1+ ∈1a3 = a1+ ∈2 and a4 = a1+ ∈3 where ∈1≥ 1 ,∈2≥ 2 and

∈3≥ 3 respectively,
From Corollary 3.2.6 we have,
n1 = (a1a3)

2 +(a1a4)
2 +(a2a3)

2 +(a2a4)
2 +(a1a2a3a4)

2 +2a2
1a3a4 +2a1a2

2a2
3a4 +2a2

1a2
3a2a4 +2a1a2a2

4 +2a2
1a2

4a2a3 +
2a1a3a2

2a2
4 +2a3a2

2a4 +4a1a4 +4a2a3 +4a1a3 +4a2a4 +8a1a2a3a4

n2 = (a1a2)
2 +(a1a4)

2 +(a2a3)
2 +(a3a4)

2 +(a1a2a3a4)
2 +2a2

1a2a4 +2a1a2
2a2

3a4 +2a2
1a2

2a3a4 +2a1a3a2
4 +2a2

1a2
4a2a3 +

2a1a2a2
3a2

4 +2a2a2
3a4 +4a1a4 +4a2a3 +4a1a2 +4a3a4 +8a1a2a3a4

Now consider
n2 − n1 = a2

1
(
a2

2 −a2
3
)
+ a2

4
(
a2

3 −a2
2
)
+ 2a2

1a4 (a2 −a3) + 2a2
1a2a4a3 (a2 −a3) + 2a1a2

4 (a3 −a2) + 2a1a2a3a2
4 (a3 −a2) +

4a2a3a4 (a3 −a2)+4a1 (a2 −a3)+4a4(a3 −a2)
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Table 4. All classes of circuits of length four
Equivalence Class
E[_,_,_,_]

(
E[_,_,_,_]

∣∣∣ Cyclically Equivalence
class Ec

[_,_,_,_]

(
Ec

[_,_,_,_]

∣∣∣ Distinction of orbits ∈
Q∗(√_)

E[a1,a2,a3,a4] 24
Ec

[a1,a2,a3,a4] 8 γG,
−
γ

G
,−γG,−

−
γ

G
∈

Q∗(
√

n2)

Ec
[a1,a3,a2,a4] 8 γG,

−
γ

G
,−γG,−

−
γ

G
∈

Q∗(
√

n1)

Ec
[a2,a1,a3,a4] 8 γG,

−
γ

G
,−γG,−

−
γ

G
∈

Q∗(
√

n3)

E[a1,a1,a2,a3] 12
Ec

[a1,a1,a2,a3] 8 γG,
−
γ

G
,−γG,−

−
γ

G
∈

Q∗(
√

n4)

Ec
[a1,a2,a1,a3] 4 γG = −

−
γ

G
, −γG =

−
γ

G
∈ Q∗(

√
n5)

E[a1,a1,a1,a2] 4 Ec
[a1,a1,a1,a2] 4 γG =

−
γ

G
,−γG =−

−
γ

G
∈

Q∗(
√

n6)

E[a1,a1,a2,a2] 4 Ec
[a1,a1,a2,a2] 4 −γG =

−
γ

G
,−

−
γ

G
= γG ∈

Q∗(
√

n7)

Now using above substitutions we have,
n2−n1 =−4 ∈1∈3 +4 ∈2∈3 −4 ∈2

1∈2∈3 +4 ∈1∈2
2∈3 −∈2

1∈2
3 +∈2

2∈2
3 −4 ∈2

1∈2 a1+4 ∈1∈2
2 a1−6 ∈2

1∈3 a1+6 ∈2
2∈3 a1−

4∈1∈2
3 a1+4∈2∈2

3 a1−2∈2
1∈2∈2

3 a1+2∈1∈2
2∈2

3 a1−4∈2
1 a2

1+4∈2
2 a2

1−10∈1∈3 a2
1+10∈2∈3 a2

1−2∈2
1∈2∈3 a2

1+2∈1∈2
2∈3

a2
1 −2 ∈2

1∈2
3 a2

1 +2 ∈2
2∈2

3 a2
1 −4 ∈1 a3

1 +4 ∈2 a3
1 −2 ∈2

1∈3 a3
1 +2 ∈2

2∈3 a3
1 −2 ∈1∈2

3 a3
1 +2 ∈2∈2

3 a3
1 −2 ∈1∈3 a4

1 +2 ∈2∈3 a4
1

after simplification, we have,
n2−n1 =(∈2 − ∈1)(4∈3 +4∈1∈2∈3 +∈1∈2

3 +∈2∈2
3 +4∈1∈2 a1+6∈1∈3 a1+6∈2∈3 a1+4∈2

3 a1+2∈1∈2∈2
3 a1+4∈1

a2
1 +4 ∈2 a2

1 +10 ∈3 a2
1 +2 ∈1∈2∈3 a2

1 +2 ∈1∈2
3 a2

1 +2 ∈2∈2
3 a2

1 +4a3
1 +2 ∈1∈3 a3

1 +2 ∈2∈3 a3
1 +2 ∈2

3 a3
1 +2 ∈3 a4

1 > 0
Since ∈2 − ∈1≥ 1 and all other terms in bracket are positive therefore the above expression is positive.
Similarly, we can prove n3 −n2 > 0 , Thus the result.
Theorem 4.2. Let a1,a2,a3,a4 be positive integers such that 0 < a1 < a2 < a3. Then the two equivalent but not simi-

lar classes Ec
[a1,a1,a2,a3]and Ec

[a1,a2,a1,a3] correspond to the orbits contained in Q∗(
√

n4) and Q∗(
√

n5) respectively with the
condition n5 < n4.

Proof: From Corollary 3.3.2, we have
Since a1 < a2 < a3 we may assume a2 = a1+ ∈1 and a3 = a1+ ∈2 where ∈1 and ∈2 are positive integers with ∈1≥ 1

and ∈2≥ 2.
Thus n5 − n4 = − ∈1 (4 ∈2 + ∈1∈2

2 +4 ∈1∈2 a1 + 4 ∈2
2 a1 + 2 ∈1 a2

1 + 8 ∈2 a2
1 + 2 ∈1∈2

2 a2
1 + 2a3

1 + 2 ∈1∈2 a3
1 + 2 ∈2

2
a3

1 +2 ∈2 a4
1)< 0. Hence, the result.

5 Conclusion
Discussion about the different properties of reduced numbers and distributed types of length 2 in three different categories leads
to the reader to understand more deeply the role of reduced numbers in the coset diagram with the help of continued fractions.
Distance in coset diagram is defined and new results are derived in this sense. General results are obtained by considering these
reduced numbers on real line which makes easy for us to understand their behavior. This work can be used to generalize the
properties of types of length 4 and so on. Reduced numbers have upper and lower bounds as real numbers in a specific type
of length 2. Classification has been done for all the circuits of length four under the action of modular group into different
classes and sub classes of circuits. These provide answer to the question that for given four positive integers which need not
to be distinct, how many circuits of length four exist? Moreover, how many to these circuits are contained in the same orbits
of Q∗(

√
n). In this paper we have calculated all possible numbers i.e. ni, i= 1,2, . . . ,7 and proved that n1 < n2 < n3 and n5 < n4.

This research motivates to explore other circuits of length six and higher in the similar manner.
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