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Abstract
Our aim in this article is the finding time-dependent disorders in homogeneous and stationary plasma magnetoresistance 
that it will be described by using the equations described in the text these equations are non-linear. However, we restrict 
our attention to Low-amplitude disturbances and so we expect that finding a set of linear differential equations that de-
scribe the Low-amplitude differences then the wave form of the equations will be searched, if the velocity is non-zero 
non-impaired, but uniform. Always, we can move plasma to a framework in which it is at stasis. Therefore, we assume 
that the initial velocity is zero and also assume that the plasma is in equilibrium. If the static balance by entering a slight 
disturbance in the plasma velocity, this disturbance leads this small magnetic field disturbance disorders, fluid pressure 
and mass density. We infer that if the system does not establish that the magnetic field or magnetic field intensity is low. So 
that it becomes possible to ignore its effect and when the gas temperature is uniform, wave properties of the system can 
be studied using analytical methods.
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1. Introduction
In electromagnetic laboratory tests, quantitative magnetic 
field is usually considered as “functional” or “deter-
mined” quantity and electrical current is considered as 
“created” quantity of the electric field. This expression is 
considered as common interpretation of Ohm’s law1. But 
in Astrophysics and in many other situations of plasma 
physics, so it is reasonable that ohm’s law is interpreted 
in slightly different form2. In other words, this expression 
means that we find approximation of infinite conduc-
tivity, Ohm’s law leads to equation for the change in the 
magnetic field based on magnetic field and velocity field. 
In the absence of an internal magnetic field, disturbance 
will be unstable3. If an internal field is established, internal 
magnetic pressure will decrease with increasing radius, 
because the magnetic pressure is constant4–9. In this paper, 
we study the time-dependent disorders in homogeneous 
and stationary plasma magneto resistance. If the interior 

is severe enough, this reduction in internal magnetic pres-
sure is higher than reducing the deviation of the external 
magnetic; in this case the disturbance is permanent. 

2. Computational Method
Due to the plasma state descriptors and not due to the 
infinite conductivity, we consider consequences of Ohm’s 
law with a little more detail10:
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 is applied as the fluid velocity. And we obtain 
following equation for changing the magnetic field 
time11: 
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This relationship can be rewritten again like the follow-
ing. By determining the initial magnetic field distribution, 
velocity field, the resistance as a function of distance and 
time, this equation determines the change in the mag-
netic field. By using the fact that the magnetic field is no 
divergence, in turn, this equation can be written (in the 
vertical pages) as:

( ) ( )
2

4 4
B c cV B B B
t

hh
p p

∂
=∇× × − ∇× + ∇

∂

 (4)   

Second statement from left hand shows effect of resistiv-
ity change on current caused by magnetic field. Now, for 
simplicity, we will assume that resistivity is uniform so 
that the statement will be deleted. Now, for reasons that 
will become clear, penetration coefficient D is defined as 
follows12:
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However, the magnetic field without any divergence is 
including:
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First statement of right hand is called convection. And 
it will be seen that it shows the orientation of the mag-
netic field lines to “inertia” in the fluid. Second sentence 
is called penetrative statement. It shows leakage magnetic 
field lines in conductive fluid. Each of these two contradic-
tory effects depending on the length and time scales can 
be overcome. So, be familiar with the following dimen-
sionless parameters called “magnetic Renault number” is 
helpful alike Renault number hydrodynamic.
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However, in this equation, we only refer to magnitude 
corresponding quantities. L is the length characterized by 
shift of the magnetic field. Obviously, domination of pen-
etration or convention depends on whether 1MR  or 

1MR  . For laboratory tests, it is including liquids such 
as mercury or sodium, per Laboratory rates 1MR  .

However, in geophysics and astrophysics, the number 
MR  is too large. For the special case of hydrogen plasma 

quite ionized hydrogen plasma, terms of penetration coef-
ficient can be utilized. In this case, the penetration rate is 
expressed as follows:

13/1 3/210D T −

=
 (9)

So that the number of magnetic Led Renault becomes:
13/1 3/210MR T Lu−

=  (10)

For example, consider the situation in the sphere mag-
net, common temperature is 410T K= . It can be typical 
lengths scale of the radius earth, so that 9~10L cm.

If, for speed, the speed of the jet stream is about
4 110 cms− , we find that 6~10MR .
Another example, when the change time of magnetic 

field is an active area of the solar corona. In this situation
6~10T K  and 9~10L cm , common movement lead to 
5 1~10  u cm c−  and we find that this value

10~10MR  will be 
obtained13–19. We see that in both examples, Geophysical 
and Solar Physics, the effect of penetrating statement will 
be ignored, completely, if their length scales are related to 
macroscopic systems. However, we should be cautious in 
giving out these assumptions. For example, if we assume 
a situation where a pair of sunspot moved to another pair 
of sunspots, this fact that the plasma is strongly conductor 
prohibits the acceptance of a potential field configuration. 
Instead, there tends to be a region with a high gradient 
magnetic field, called “laminar flow”.

3. Result and Discussion
Now, we assume that if there is Infinite conductivity, infi-
nite conductivity, or its equivalent, the magnetic unlimited 
number Led Reno should be considered. In this case, you 
have:
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Suppose Γ Package parcel surrounded by S surface in 
a non-uniform magnetic field, and ),( txB



is variable in 
time. Our goal is to evaluate the rate of change of the flux 
through the surface by assumption that parcel with fluid, 
which is assumed to be perfectly conducting, is moving. 
In a short period of time t∆ , our goal is to evaluate the 
rate of change of the flux through the surface. Each point 
on the closed curve Γ  travels a little distance to tv∆ until 
it has become the new jumpΓ′ . Now every point on the 
surface S moves to another place and they are dislocated, 
and draws a new level of S ′, it is restricted jumpΓ′. Thin 
annular surface connected Γ  and Γ′  jump, that it is 
shown by aS . Now we want to compare the magnetic flux 
enclosedΓ  jump in time T with the product flux jumpΓ′  
at time tt ∆+  then, we write:
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And,
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Where n is the unit vector perpendicular on the surface. 
By expanding ( )ttxB ∆+,  it is clear that until the first 
time of t∆ , we have:
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Change is entered through the integral of the second term 
area S instead of S ′  area is the second-order so that it 
can be ignored. It is assumed that the aS magnetic flux 
passes, we have the first-order t∆ :
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Since the magnetic field is no divergence, we have:
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Now according to above equation, we have:
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In the 0t∆ → , we can write this equation as follows:
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As it moves, the rate of change of the dtd /Φ  magnetic 
flux enclosed section is filled with fluid.
By using Stoke’s theorem, it becomes:
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We have shown that the magnetic flux threading in 
each level to move with the fluid level, does not change. 
Although we cannot directly infer from this statement 
that the “magnetic field lines” of plasma are “inertia”, but 
see, this interpretation is fully compatible.

Another approach to this problem is the expansion of 
the right relationship between the infinite conductivity 
(by using . 0B∇ = ) becomes:
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This includes the following equation, Convective deriva-
tive of the magnetic field vector, leads to:
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Because of the continuity equation we have,
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Observed that:
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This equation can be rewritten as follows:
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Now, we consider change time of the small vector xd  
that two adjacent points are connected to the fluid, as the 
year is moving with described velocity field. The start-
ing point at position x at time t is displaced the position 

txVx ∆+ )( at time tt ∆+ . The starting point xx d+  at 
time t will displace the position ( ) txxVxx ∆+++ dd  at 
the t∆  moment. Thus, we find that,

( ) ( . )d x x V
dt

d d= ∇  (25)

4. Conclusion
All of the above relations, we find that where 1Br − and 

xd are satisfied the same differential equation (forever). In 
this way, if at the beginning 1x Bd er −

= , this relationship 
has been established. So, if two particles are located adja-
cent to the plasma at the beginning of a line, the result 
suggests that they are located on a line field.
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