
Abstract
Objectives: Quantum wires are one-dimensional (1-D) material that exhibit length to width ratios of about 1000 or more. 
The properties of quantum wire are due to the electrons in them have quantized energy levels perpendicular to their 
lengths. Such quantum confinement effect exhibits discrete values of electrical conductance which are integral multiples of 
(e2/h). Methods/ Analysis: In this paper we present a quantum mechanical analysis of evaluation of the electron energy 
eigen states and their corresponding eigen functions in a quantum wire of circular cross-section. Findings: The energy 
eigen values of quantum wires of different radii are calculated. Applications: On the basis of our preliminary analysis it 
has been observed that quantum wires can also be used as electronic energy filters.
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1.  Introduction
Quantum wire is a one-dimensional nanostructure having 
quantum confinement in two dimensions. This quantum 
confinement affects various physical properties of materi-
als like structural, elastic, electronic, optical, electrical1, 2 
properties etc. and these effects have found many applica-
tions in various other disciplines2-6. Quantum wires can 
be made of organic molecular chains and of semiconduc-
tors such as InP, Si, GaN etc7. They have applications in 
nanomaterial science as interconnects and as functional 
units in fabricating devices with nano scale dimensions8, 9. 
Energy levels of a semiconductor nanostructure can be 
calculated by considering the electrons to be immersed in 
a potential well surrounded by a potential barrier10. Such 
structures can be cubes or spheres (quantum dot)11, cyl-
inder (quantum wire), potential well (quantum well). It is 
necessary to accurately evaluate the energy eigenvalues of 

the quantum wire for the design of the devices. With the 
potential barrier for experimental quantum wires being 
of finite heights, energy eigenvalues may be evaluated by 
applying numerical methods for solution of the relevant 
envelop function equation on the conventional tech-
nique. Gangopadhyay and Nag had calculated the energy 
eigenvalues in a square and a rectangular quantum wire 
with a finite barrier potential height12.They extended 
their calculation for the triangular and arrowhead shaped 
quantum wires13. As it had been suggest in the tunneling 
concepts14-16 that the electron eigenvalues and eigen-
functions remain unaffected within the quantum wells 
of different finite heights when the width of the barri-
ers are of the order of several electron wavelengths (so 
that no tunneling can occur). In this paper we have pre-
sented a calculation for electrons emerged in a cylindrical 
potential well of infinite height and narrow cross-section 
(~nm2) but of a larger length (~µm).
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2.  Materials and Methods

2.1 � Quantum Confinement Effect in a 
Cylindrical Quantum Wire

Presuming the electrons to be immersed in a barrier of 
infinite height, the time independent Schrodinger equa-
tion within the wire can be expressed as

	
2

2

2m
− ∇  = Ey � (1)

Where ‘E’ is the energy and ‘m’ is mass of electron, ‘ ’ is 
reduced form of planks constant i.e. 

2
h
p

.

In cylindrical co-ordinates (as the quantum wire is of 
circular cross-section) it can be expressed as
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Now if we write

	 ( , , ) ( ) ( ) ( )z R Z zy r j r f j= � (3)

( )R r  is the radial part and ( ) ( )Z zf j  represents the 
axial part of the wave function.

Equation (3) reduces to
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Equation (4) can be rewritten as
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Where the total electron wave vector k can be expressed as

	 2
2

2mEk =


� (6)

Now, if γ and ω respectively represent axial and radial 
wave vectors, we may also write

	 2
2

2 zmEg =


� (6a)

	 2
2
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
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Where Ez is axial energy and Ep is radial energy.
This is so because zE E Er= + . Now from equation (5) 

we can isolate the axial part of the wave equation as

	
2
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Whose allowed solutions is

	 ( ) i zZ z Ae g±= � (8)

This represents a freely propagating wave along 
z– direction which is the longitudinal part of the wave 
function.

The transverse part of the wave function can also be 
isolated from (5) as
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Rearranging (9) we write
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Where m is a pure number.
Now separating the ϕ part of the equation in (9a) we 

can write
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Whose solution is given by

	 imBe jf ±= � (11)

This is the angular part of the wave function. The 
radial part of the wave equation is then given by
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Rearranging (12) we write
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This equation represents Bessel’s function of integral 
order17.Its solution is

	 ( ) ( )mR Jr wr= � (13)

The total electronic wave function may then be 
expressed as 

( , , ) ( ) ( ) ( )z R Z zy r j r f j=

	 ( ) i z im
mCJ e eg jwr − ±= � (14)

This represents an electron wave of amplitude ( )mJ wr
moving along Z-axis. From equation (5) we get

	
22 2k w g= +  or 

2 2 2kg w= − � (15)

We find from (15) that γ is real only if k w≥ . Only in 
such a case there can be free wave propagation along the 
axis of the cylinder. In other words 
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	 i.e. 
2 2

r
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l l

≥ � (16)

Where λ and λp represents the total and radial electron 
wave lengths respectively.This shows that electrons of 
wavelength λ < λp can only propagate through the quan-
tum wire, which suggests the possibility of a quantum 
wire to be used as an energy filter18.

For m=0, equation (12a) becomes

	
2

2
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Let s wr=  so equation (17) becomes
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This is Bessel’s equation with m=0. Its general solu-
tion is

	 0 1 0 2 0( ) ( )R C J s C Y s= + � (19)

Where J0 and Y0 are Bessel functions of the first kind and 
of the order zero. Since, wave function R is always finite 
but Y0 becomes infinite as 0s →  as shown in Figure 1. We 
therefore cannot use Y0 in (19) and we must choose 2 0C = .

Clearly then 1 0C ≠ , otherwise 0R = . We may set 1 1C =  , 
when

	 0 0 0( ) ( ) ( )R J s Jr wr= = � (20)

3.  Results and Discussion
At the boundary (surface) of the quantum wire ( )ar =  , 
we must then have for the radial part of the wave func-
tion:

	 0( ) ( ) 0aR a J aw= = � (21)

The Bessel’s function 0 ( )J aw  has infinite number of 
zeroes.

Writing s aw=  the values of ‘s’ for which 0 ( )J aw  is 
zero are represented as

s (nodes of the wave functions)= 1 2 3, , ,a a a − − − − −
where 1a = 2.4048, 2a = 5.5201, 3a = 8.6537------- etc
We notice that these zeros are irregularly placed. 
Let’s write n naw a=
or n

n a
aw = , where n = 1,2,3-------------

3.1 � Calculation of the radial part of the 
eigen function

This is given by

	 ( ) ( ) n
mn m n mR J J

a
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Figure 1.  The plot of the Bessel Function of integral order17. 
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Figure.2.  Bessel function of integral order 0 ( )J aw .

Figure 3.  The first three radial parts of the wave 
function in a quantum wire for m=0. In the figure  

(a). i.e 1
01 0( )R J

a
ar r =   

, (b)i.e 2
02 0( )R J

a
ar r =   

 

and (c) i.e 3
03 0( )R J

a
ar r =   

 plots are for the ground 

state, first-excited state, and the second excited state, 
respectively.
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Figure 4.  Bessel function 1( )J aw .

Figure 5.  The first three radial parts of the wave 
function in a quantum wire for m=1. In the figure  

(a) i.e 1
11 1( )R J

a
ar r =   

, (b)i.e 2
12 1( )R J

a
ar r =   

 

and (c)i.e 3
13 1( )R J

a
ar r =   

 plots are for the ground 

state, first-excited state, and the second excited state, 
respectively.

Figure 6.  The radial energy eigen values vs. wire radius. 
The different curves correspond to different eigen states. The 
lower, middle and the top refer to the ground state, first-
excited state and the second excited state respectively.
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This must vanish at ar =  (at the surface of the wire)
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Table 1  Calculated values of 
2 2

2
n

nE
mr
w=   in meV for 

the quantum wire of circular cross-section. 1Er , 2Er ,

3Er  refer to the ground state, first-excited state, 
and second- excited state energies, respectively. These 
values are calculated for quantum wires of different 
radii.

Radius of 
the wire 
in nm

For 1a =  2.4048 For 2a =  5.5201, For 3a =  8.6537

2 2
1

1 2
E

mr
w=   in meV

2 2
2

2 2
E

mr
w=   in meV

2 2
3

3 2
E

mr
w=   in meV

10 2.2 11.6 28.5

20 0.549 2.89 7.11

30 0.244 1.29 3.16

40 0.123 0.729 1.78

3.2 � Calculation of energy eigen values for 
the radial parts of the wave function

The radial part of the energy eigenvalue is given by equa-
tion (6b) appended below

	
2 2

2
E

mr
w=  � (23)

Where Er is the radial part of the energy. The energy eigen-
values of different eigenstates are tabulated in Table 1.
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This implies electrons of wavelengths rl l<  will be 
able to propagate through the wire. This is the principle 
of energy filter.
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Table 2  Variation of radial quantized – energies in a 
quantum wire with circular cross-section as a function 
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of the wire as we move from ground level to different 
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