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Abstract
Objectives: In this work, the approximate solution of non-linear third order Korteweg-de Vries equation has been studied. 
Methods: The proposed numerical technique engages finite difference formulation for temporal discretization, whereas, 
the discretization in space direction is achieved by means of a new cubic B-spline approximation. Findings: In order to 
corroborate this effort, three test problems have been considered and the computational outcomes are compared with the 
current methods. It is found that the proposed scheme involves straight forward computations and operates superior to 
the existing methods. Novelty/Improvements: The proposed numerical scheme is novel for Korteweg-de Vries equation 
and has never been employed for this purpose before.

Indian Journal of Science and Technology, Vol 12(6), DOI: 10.17485/ijst/2019/v12i6/141953, February 2019 

Keywords:  Cubic B-spline Collocation Method, Cubic B-spline Functions, Finite Difference Formulation, Korteweg-de  
Vries Equation

ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

1. Introduction
The third order non-linear Korteweg-de Vries (KdV) 
equation occurs in many physical applications such as 
non-linear plasma waves which exhibit certain dissipative 
effects1, propagation of waves2 and propagation of bores 
in shallow water waves3. The KdV equation is given by

 u uu u u x a b t Tt x xx xxx+ + + = ∈[ ] ∈[ ]α β γ 0 0, , , , ,  (1)

with conditions

 

u x g x
u a t t u b t ut b t tx

( , ) ( ),
, , , , , ,
0

1 2 3

=

( ) = ( ) ( ) = =( ) ( ) ( )φ φ φ  (2)

where, u u x t= ( ), , α β γ, ,  are constants and 

g x t t t( ) ( ) ( ) ( ), , ,φ φ φ1 2 3  are known functions.

In recent years, the KdV equation has gained a 
considerable research attraction due to its numerous 
applications in real life phenomena. Especially, the trav-
eling wave solution has been considered extensively. 
Kutluay et al.4 employed integral methods with heat bal-
ance to study the small time solutions to KdV equation. 
The numerical solution to third order KdV equation was 
discussed by Bahadir5 using exponential finite differ-
ence scheme. Ozer and Kultuay6 proposed a numerical 
technique for solving KdV type equations. The authors 
in7 employed the method of lines for small times solu-
tion of KdV equation. Dehghan and Shokri8 proposed a 
numerical method based on multi-quadratic radial basis 
functions for solving KdV equation. Dag and Dereli9 
explored the numerical solution of KdV equation by 
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means of radial basis functions. A mesh free method 
based on radial basis functions was presented by Khattak 
and Tirmizi10 for approximate solution of KdV equation. 
Xiao et al.11 investigated the numerical solution to KdV 
equation using multi-quadric quasi-interpolation opera-
tor. Sarboland and Aminataei12 proposed a numerical 
scheme based on integrated radial basis functions and 
multi-quadric quasi-interpolation operator for solving 
of KdV equation. Rashid et al.13 solved Hirota-Satsuma 
coupled KdV equation by Fourier Pseudo-spectral 
method.

The spline functions are used extensively to solve 
the initial and boundary value problems. These func-
tions preserve a smoothness at the nodes and have the 
ability to provide the numerical solution in the entire 
domain with great accuracy. Irk et al.14 employed qua-
dratic polynomial splines for small time solution to 
KdV equation. The second degree B-spline functions 
together with Galerkin finite-element method were 
used by Aksan and Ozdes15 for solving one dimensional 
KdV equation. Saka16 employed differential quadrature 
method for solving KdV equation. Canivar et al.17 stud-
ied the numerical solution of KdV equation by means 
of third degree B-spline functions. Yu et al.18 proposed 
blended basis splines for numerical solution of KdV 
equation. The spline finite-element and collocation 
methods have been discussed by Micula and Micula19 
for solving KdV-Burger equation. Ersoy and Dag20 pro-
posed exponential cubic basis splines for numerical 
solution of KdV equation. The modified exponential 
B-spline collocation method has been proposed by 
Raslan et al.21 for numerical solution of one dimen-
sional KdV equation. Lakestani22 presented a numerical 
scheme based on finite difference method and B-spline 
functions for solving third order non-linear KdV 
equation. Dong23 developed a new hybrid discontinu-
ous Galerkin approach for numerical solution of KdV 
 equation.

In this work, the numerical solution of non-linear 
KdV equation has been considered. The usual finite 
difference scheme24 and new Cubic B-Spline (CBS) 
approximations25,26 have been used for temporal and spa-
tial discretization respectively.

The roadways of this study is: In section 2, we 
shall discuss some preliminaries of ordinary CBS 
interpolation. The numerical method is presented 
in section 3 and experimental outcomes are given in  
section 4.

2. Cubic B-spline Functions
We uniformly partition the spatial domain a b,[ ]  into 
n+1  equidistant knots as x x ih i ni = + = ( )0 0 1,  with 

h
n

b a= −( )1 . The pth  B-spline function of degree r, order 

r +1 , is defined as27

For r = 0
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Using(4), the typical CBS functions are defined as28
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where, p n= − ( ) +1 1 1 . For a sufficiently smooth function 
u x t,( )  there always exists a unique third degree spline 
U x t,( ), which satisfies the prescribed interpolating 
 conditions such that

           U x t c t B xp
p

n

p, ,( ) = ( ) ( )
=−

+

∑
1

1

 (6)

where, c tp ( )’ s are, time dependent real constants, yet 
to be calculated. For simplicity, we express the CBS 
approximations U x U x U xi i i( ) ( ) ( )′ ′′, ,  and U xi

′′′ ( )  by 
U m Mi i i, ,  and Ti  respectively. The third degree basis 
spline functions (5) together with (6) yield the following 
relations

 U c B c c cxi p
p i

i

p i i i= = + +( )( )
= −

+

− +∑
1

1

1 1
1
6

4  (7)

 m c B
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+
′
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1

1 1
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Moreover, for second and third order derivatives, we shall 
use the following new CBS approximations25,26
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3.  Description of the Numerical 
Method

In this section, we present the numerical scheme for 
solving non-linear KdV equation. Applying usual finite 
difference method and θ  weighted scheme, the problem  
is discretized in time direction as

  
u u
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where, ∆t is the step size in time direction, 0 1≤ ≤θ  and 
ui

j+1  is used to denote u x t ti j, +( )∆ . The non-linear term 
uux

j( ) +1  is linearized as29,30
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Forθ = 1
2

, the relation (13) can be rearranged as
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Substituting the approximation for u and its derivatives at 
the knot xi , equation (14) takes the following form
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Using (7)–(10) in (15), for i n= −0 1 2 3 1, , , , , , we 
obtain the following linear equations involving 
n+ 3  unknowns.
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Three more equations are obtained from the boundary 
conditions (2) as
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The set of equations (16)–(24) can be written in matrix 
from as
 AC Bj+ =1 ,  (25)

where A denotes the coefficient matrix of order 
n+ 3 , B is column matrix of order n+ 3  and 
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  is the set of control points at 

the j th
+( )1  time level.
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Before starting any computation using (25), we obtain the 
following three equations from initial condition (2)

 m xg0
0

0= ′( ) ,   (26)

 U g x i ni i
0 0 1= ( ) =, ( ) ,  (27)

 m g xn n
0 = ′( ).  (28)

Using (7)–(8), we get
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1
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02 ,  (29)

 c c c g x i ni i i i− ++ + = ( ) = ( )1
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1
04 6 0 1, ,  (30)

 − + = ′− +c c h g xn n n1
0

1
0 2 ( ).  (31)

The above system can be expressed in matrix form as

 AC B0 = .  (32)

The unknown column vector C0  is determined by well-
known Thomas algorithm. The numerical computations 
are executed in Mathematica 9.

4. Numerical Results
In this section, the approximate solution to (1)–(2) is 
presented. The accuracy and validity of the proposed 
numerical method is tested by three error norms L∞, L2 
and Root Mean Square (RMS), which are calculated as

L max U u L U u
U u

ni i i i i
i

n i i
i

n

∞
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== − = − =
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+∑
∑

, ( )
( )

2
2

0

2

0

1
, RMS

where, Ui and ui represent the numerical and exact 
solutions at the ith knot respectively. The approximate 
results are compared with Multi-Quadratic Radial Basis 
Functions (MQRBF)8, Multi-Quadric (MQ) and Inverse 
Multi-Quadric (IMQ) radial basis functions method10, 
Multi-Quadric Quasi-Interpolation (MQQI) approach11 
and integrated multi-quadric quasi-interpolation 
(IMQQI) method12.

Example 1:
Consider the following KdV equation8,10–12

u uu u x a b t T

u x x

t x xxx+ + = ∈[ ] ∈[ ]

= −










6 0 0

0
2 2

2

, , , ,

( , ) sechλ λ
µ

The exact solution is u x t x t( , ) sech ( )( )= − −
λ λ

λ µ
2 2

2 .  

The error norms L∞, L2 and RMS are listed in Tables 1–3, 
when n = 200 and ∆t = 0.01. It is revealed that the pro-
posed numerical scheme produces more reliable and 
accurate results as compared to MQRBF8, MQ10, IMQ10, 
MQQI11 and IMQQI12. Figure 1 shows a very close agree-
ment of the numerical solution with closed form solution 
for t = 1,3,5. Three dimensional plots of exact and approx-
imate solutions are shown in Figures 2 and 3. The absolute 
computational error using n t= =200 0 01, .∆  is displayed 
in Figure 4.

Table 1. Absolute numerical error for Example 1, when 0 40x≤ ≤  , 0 5t≤ ≤ , 0.5λ = , 7µ =

t
MQ10

0.001t∆ =
IMQ10

0.001t∆ =
MQQI11

0.001t∆ =
Proposed method

0.01t∆ =

1 51.79 10−×  56.96 10−×  31.53 10−×  68.63 10−×  

2 53.01 10−×  41.96 10−×  32.87 10−×  51.11 10−×  

3 53.98 10−×  33.83 10−×  34.14 10−×  51.26 10−×  

4 54.78 10−×  35.91 10−×  35.39 10−×  51.36 10−×  

5 55.46 10−×  38.37 10−×  36.81 10−×  51.45 10−×  
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Table 2. Error norms for Example 1, when 0 40, 0 5, 0.5, 7x t λ µ≤ ≤ ≤ ≤ = =

t L∞ 2L RMS

1 Proposed method
IMQQI12

68.63 10−×  
51.67 10−×

53.22 10−×  
46.00 10−×  

62.27 10−×  
54.23 10−×  

2 Proposed method
IMQQI12

51.11 10−×
42.38 10−×  

54.33 10−×  
49.22 10−×  

63.06 10−×  
56.51 10−×  

3 Proposed method
IMQQI12

51.26 10−×  
42.38 10−×  

54.94 10−×  
41.13 10−×  

63.48 10−×  
58.00 10−×  

4 Proposed method
IMQQI12

51.36 10−×  
43.14 10−×  

55.33 10−×  
31.29 10−×  

63.76 10−×  
59.12 10−×  

5 Proposed method
IMQQI12

51.45 10−×  
43.41 10−×  

55.64 10−×  
31.42 10−×  

63.98 10−×  
41.00 10−×  

Table 3. Error norms for Example 1, when 30 80, 0 10, 0.14, 10x t λ µ≤ ≤ ≤ ≤ = =

t t∆  L∞ 2L RMS

1 Proposed method
MQRBF8

0.01
0.001

72.00 10−×  
66.89 10−×

77.24 10−×  
52.14 10−×  

85.11 10−×  
61.35 10−×  

2 Proposed method
MQRBF8

0.01
0.001

74.43 10−×
68.60 10−×  

61.84 10−×  
53.50 10−×  

71.30 10−×  
62.21 10−×  

3 Proposed method
MQRBF8

0.01
0.001

75.84 10−×  
68.40 10−×  

62.60 10−×  
54.10 10−×  

71.83 10−×  
62.59 10−×  

4 Proposed method
MQRBF8

0.01
0.001

76.84 10−×  
69.21 10−×  

63.14 10−×  
54.28 10−×  

72.21 10−×  
62.70 10−×  

5 Proposed method
MQRBF8

0.01
0.001

77.87 10−×  
68.56 10−×  

63.71 10−×  
54.55 10−×  

2.61 10×  
62.87 10−×  
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Figure 1. Numerical and exact solution for Example 1,  
when 1,3,5t =  and 200, 0.01, 0 40, 0.5, 7.n t x λ µ= ∆ = ≤ ≤ = =

200, 0.01, 0 40, 0.5, 7.n t x λ µ= ∆ = ≤ ≤ = =

Approximate Solution
Exact Solution

t =1 t =5
t =3

10 20 30 40

0.05

0.10

0.15

0.20

0.25

Figure 2. Exact solution for Example 1, when 
0 40, 0 1, 0.5, 7.x t λ µ≤ ≤ ≤ ≤ = =

Figure 3. Approximate solution for Example 1, with 
0 40, 0 1, 0.5, 7, 200, 0.01.x t n tλ µ≤ ≤ ≤ ≤ = = = ∆ =

Figure 4. Absolute error for Example 1, with 
0 40, 0 1, 0.5, 7, 200, 0.01.x T n tλ µ≤ ≤ ≤ ≤ = = = ∆ =  

Example 2:
Consider the following KdV equation23

u uu u x a b t T

u x x
t x xxx+ + = ∈[ ] ∈[ ]
( ) = +( )

6 0 0

0 2 42

, , , , ,

, . sech

The exact solution is u x t x t, sech( ) = − +( )2 4 42 . The 
computational error norms L∞, L2 and RMS are listed in 
Table 4 when n = 200 and ∆t = 0.01. Figure 5 shows the 
approximate and exact solution at t = 0.2,0.4,0.6,0.8,1. The 
three dimensional plots of analytical and approximate 
solutions are displayed in Figures 6 and 7. The abso-
lute computational error is portrayed in Figure 8 using  
n = 200 and ∆t = 0.01.

Table 4. Error norms for Example 2, when 10 0x− ≤ ≤ , 
0 1t≤ ≤ , 0.5λ =

t L∞  2L  RMS

0.2 53.39 10−×  
41.82 10−×  

51.29 10−×  

0.4 53.49 10−×  
42.40 10−×  

51.69 10−×  

0.6 55.12 10−×  
43.41 10−×  

52.40 10−×  

0.8 58.21 10−×  
44.76 10−×  

53.36 10−×  

1.0 58.09 10−×  
44.30 10−×  

53.03 10−×  
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5. Conclusion
In this paper, numerical solution of non-linear third 
order KdV equation has been explored. We conclude the 
outcomes of this research as:

1. The presented algorithm is based on usual finite differ-
ence scheme and CBS collocation method.

2. The proposed technique is novel for third order non-
linear KdV equation.

3. Usual finite difference scheme has been employed for 
temporal discretization.

4. The new CBS approximations have been used to inter-
polate the solution in space direction.

5. Due to straightforward and simple application, it out-
performs the MQRBF8, MQ10, IMQ10, MQQI11 and 
IMQQI12 approaches.
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