
Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/107978, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1.  Introduction

1.1 Mobile Agents
Mobile agents1 are independent programs that can be 
drifted from one host to another host in a heterogeneous 
network. In mobile agents, functions can be obtained 
effectively. It is also used to implement applications for 
the distributed systems with robust framework. Besides 
this, it offers betterment to the latency, bandwidth of 
master-slave applications and shrinking vulnerability to 
disconnecting the network. Mobile agents2 have several 
advantages and disadvantages in the development of 
different services in the application of distributed system. 
The benefits of using mobile agents are to reduce network 
load, to design robust and fault–tolerant systems, to 
overcome the network latency and so on. The mobile 
agent examples2 are Aglet, Concordia, voyager, agent 
TCL, which are mainly used for the safety of the mobile 
codes.

1.2 Aglets
IBM Aglets Workbench (Aglets) was developed by in 
from IBM Tokyo Research laboratory in 1996. Aglet3 is a 

Java object that is able to migrate from a host to another 
host in a network. Aglets working in a host could stop 
its execution, migrate to other host, and continue its 
execution. When aglet migrates, it carries the program 
code and each state from every single object carrying it. A 
built in security mechanism is able to secure a host from 
an un-trusted aglet. The word “Aglets” is the combination 
of agent and applet. The difference with an applet is that 
aglet also carries state and itinerary (migrating plan). 
Aglets Software Development Kit (ASDK) is a software 
packages which can be used to write a mobile agent 
application. ASDK is based on Java language and can be 
obtained freely from the internet either in source code 
form or byte code from compiled binary file.

1.3 Aglet API
An Aglet interacts with its environment through an Aglet 
Context object4. Aglets are always executed in Aglet 
Contexts. It interacts with one to other; Aglets goes to 
Aglet-Proxy objects. The Aglet-Proxy object role as an 
interface of an Aglet and accommodate generally Aglet 
access behind the code. In this pathan Aglet-Proxy object 
can protect an agent against duplicate agents.

Abstract
Background/Objectives: Security is an important feature for the communication of data in the mobile network. But, 
however the existing work does not satisfy the security feature of the communication of data in the network. Methods: 
Due to lack of security in mobile agents, there are many chances of security breach through intruders. To overcome these 
disadvantages, a general secured aglets system has been proposed and load balancing is achieved effectively through 
various models. Findings: The evolved aglet system exhibits high security under the external attackers. Hence, it distributes 
workload for all intermediate client users and determines various time calculations like Total run-time and Elapsed-time. 
Applications: Some mobile agent applications are Mobile Computing, Personal Assistant, E-commerce, Data Collection, 
Secure Brokering, Information Distribution, Network Security testing, Database searches and Parallel Computing.

Keywords: Aglets, Load Balancing, Mobile Agents, Security

An Effective Load Balancing through Mobile  
Agents using Aglet System

G. Ravindran* and S. Kamakshi 

School of Computing, SASTRA University, Thirumalaisamudram, Thanjavur - 613401Tamilnadu, India;  
ravindran.lgr@gmail.com,kamakshi@cse.sastra.edu



Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology2

An Effective Load Balancing through Mobile Agents using Aglet System

1.4 Aglet Communication Model
The key components of aglet communication model are: 
• Message: A message is treated as an object in aglets. It 

is exchanged between aglets, which allow synchronous 
and asynchronous message passing systems. It is also 
used to combine and transfer information in a loosely 
coupled in nature.  

• Future Reply: Asynchronous message uses this 
future reply for sending handle so that the sender can 
receive an acknowledgement asynchronously.   

• Reply Set: A reply set is a set which holds various 
future replies. By using this, the results can be 
obtained.

1.5 Basic Operations
Some of the basic operations involved in an Aglet are: 
Creation, Cloning, Dispatching, Retraction, Deactivation, 
Activation, and Disposal. 
• Creation: In this context, aglet can be created and 

its identifier will be assigned for the newly created 
aglet. After the aglet is inserted into the context, its 
initialization process is started.   

• Cloning: The cloning process produces duplicate 
image of the original aglet in the same context. The 
duplicated image differs from the original aglet by 
their assigned identifier.  

• Dispatching: An aglet is dispatched from one agent 
to another agent by removing all aglet functionalities 
from its current agent and transferring the 
functionalities to the destination agent where the 
functionalities need to be executed. 

• Retraction: In Aglet retraction process, the aglet 
context is removed from its current agent and 
transfers the aglet context to the requested agent. 

• Deactivation: Deactivation is the process of halting 
the execution of an aglet and saves its data into 
secondary storage.

• Activation: Activation is the process of restoring the 
existing state from the secondary storage.

• Disposal: Disposal is the process of halting the 
execution and disposing the context from the 
secondary database.

1.6 Aglet Environment
Tahiti is an application program serving the work as aglets 
server. Tahiti is bundled inside one package with ASDK. 

A number of servers (Tahiti) can run in a single computer 
by labeling each one of them with different port number. 
Tahiti also provides user interface for monitoring, 
creating, sending, and extermination of an aglet and also 
determining privilege access for an agent.

In has introduced the Threshold algorithm5  which 
is used for assigning the loads during the node creation. 
Remote message is sent without selecting a node. Every 
node has one copy of private load systems. Categories the 
load in some levels: Under-Load, Over-Load and Medium 
and parameters like Xmin and Xmax of these levels. 

Under-Load load <Xmin
Medium Xmin<= load< = Xmax
Over-Loadload >Xmax

At the beginning, every node will be treated as under 
loaded level. When the work load of a node reaches its 
maximum limit, then it forwards the messages concerning 
the new work load state to all host nodes, on a regular basis 
modernizing them as to the existent work load state. If the 
state of local is not overloaded, then the respective work 
load is apportioned locally. In other respects a host node 
under loaded node is elected and if no such nodes survive 
it is also apportioned locally. In a Threshold algorithm 
has low inter procedure information and high number 
of local process allotment. It will reduces the overhead 
of remote procedure apportion and the host memory 
access, which leads to increase the performance. In has 
developed a novel load balancing scheduling algorithm6 

for wireless sensor networks uses optimal scheduling 
algorithm for packet forwarding which determines 
the time slot for sending the packets for the nodes. The 
algorithm provides uniform packet loss probability for 
all the nodes. The algorithm uses balanced cost objective 
function for optimum scheduling. In has developed the 
algorithm7 for the load is spread out evenly to all nodes. 
The load is divided in order of round robin; where the 
equal load is appointed to every node in order of circular 
in absence of priority and it will be send back to the 
initial node if the destination node has been reached. 
Every node keeps its allocation of index load from host 
node. Round robin algorithm is easy to execute, simplex 
and free starvation. It does not require inter procedure 
information and it also gives better performance for the 
purpose of applications. It is unable to give the assumption 
result and then the processing time of jobs is unequal. In 



G. Ravindran and S. Kamakshi

Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology 3

has developed an algorithm for selecting a node based on 
random selection, without any current or previous load 
on the node information. The Randomized algorithm8 is 
basically a nature of static, which is suited for the equal 
workload on every node. Every node keeps its own 
record of work load, hence there is no inter procedure 
information is required. It may cause a congested on the 
single node, while the remaining node is not congested. 
In have introduced local queue algorithm9 to support the 
inter process migration. The idea of local queue algorithm 
is static allotment of all process migration of new process, 
which is initiated by the remote when its work load fails 
under the number of ready processes. When the remote 
gets burden, the remote host receives the request for the 
activities. The hosts then search the data in its local list 
for the ready activities and the remaining activities are 
forwards to the requestor host and the host receives the 
acknowledgement. This is a distributed co-operative 
algorithm10. It requires inter procedure information but 
smaller as compared to algorithm of central queue. The 
parameters used in load balancing are given in Table 1.

Table 1.    List of parameters
Parameters Description
Nature of load balancing It identify the algorithm 

behavior i.e. whether static or 
dynamic

Throughput It gives the details about the 
completed tasks after its exe-
cution.

Process Migration It is used to give information 
about time taken for the trans-
fer of process from one node to 
another node.

Response Time It is the time taken to complete 
the process which is for load 
balancing algorithm.

Performance It is used to check capability of 
the system.

2.  Proposed Model

Initially, client has sent their host id to the main host server 
for accessing the resources in the main host table. Server 
will accept the request from the client and it is added to 
the registered client host list table. All the required client 
ID and client address are stored in the database. Only 
registered client allows the mobile agent to go through 
the different modules. Registered client will remove any 

unwanted mobile agents if they try to replace the original 
resources. Table 2 shows the registered client host list, 
Mobile agent will be specified during the searching of 
resources. During the search of specific resources, the 
mobile agent and data size will be given as input and the 
required operations will be performed. If the required 
operation is performed, workload time and process 
migration are calculated and updated in the database. 
Otherwise, the client request will be dispatch to another 
registered client. A general architecture of the proposed 
model is illustrated in Figure 1. On another task type, 
load will be distributed among the client host depending 
on the amount of resources is available. Mobile agent and 
data size is specified in the task manager. Computational 
task will schedule for all the operations in the server host 
task manager. A required operation will be selected based 
on the number of priority given by the registered clients. 
Example: Suppose if the priority for the addition operation 
is higher than other operation, Addition operation will be 
selected first and the result will be displayed. Workload 
and response time is updated for the required operations. 
Similarly, the remaining operation on given specific task 
should be performed and the given data size as input. The 
data is distributed among the given number of mobile 
agents and its result should be updated in the Client 
request Table. The total time and elapsed time will be 
stored in the database.

Figure 1.    Architecture.



Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology4

An Effective Load Balancing through Mobile Agents using Aglet System

Table 2.    Registered client host list
Host ID Host Address
1 atp://localhost:2010
2 atp://localhost:2011
3 atp://localhost:2012
4 atp://localhost:2013

2.1  Resources Distribution for the 
Registered Client

Client host will send its host address to the main host for 
registration in order to provide access to the main host 
resources. Once the main host accepts the entire client 
hosts address and the accepted client host address will be 
maintained in the main host table (database) along with 
the separate workload field for each client host address 
(i.e.) stored in the main host table. Initially the work field 
will be set as 0. After certain of operations, the work load 
field will be updated in the main host table. The Overview 
of resources distribution to the clients is illustrated in the 
Figure 2. If any unregistered client host tries to access the 
main host resources, the main host denies the request 
using the “Aglet Proxy”. In an Aglet System, it introduces 
the new interfaces as Aglet Proxy, which will perform as 
act on aglet and it provides a mutual way of obtaining the 
aglet. In an aglet class, which contains a several public 
methods that class should unable to access directly from 
other aglets for their reasons of security, if any aglet that 
needs to transmit with other aglets must first incur the 
proxy of aglet and then it will communicate through 
this interface. In other words, the aglet proxy represents 
as a hide object that covers an aglet from malicious 
aglets. When invoked, the Aglet Proxy object consults 
the security manager to determine whether the current 
execution context is permitted to perform the method.

2.2  Searching the Required Resources using 
its Authentication

The entire client list has been registered in the database 
first. After that, the searching process will be only 
processed among the registered clients. By specifying the 
number of mobile workers and the data size, the search key 
will be automatically generated along with given amount 
of workload. When the required resources is not available 
in the respective client host, the message will be displayed 
as “found” along with the total number of keys. Because 

of this process workload in the main host table will 
incremented based on the given input data size. It also 
includes the results of start time, end time and total run 
time. The overview of authenticated search is illustrated 
in Figure 3.

Figure 2.    Overview of resources distribution to the clients.

Figure 3.    Overview of authenticated search.



G. Ravindran and S. Kamakshi

Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology 5

2.3  Load Distribution by Different Choice 
Model

In an aglet system, in order to distribute the load 
effectively through mobile agents can be achieved by 
using efficient scheduling algorithm. By choosing this 
specific choice model along with the required task, the 
resources will be distributed equally to various registered 
client host. For example, when the given choice model is 
Loop Model, the matrix will be formed by specifying the 
row and columns along with number of loop count and 
the number of mobile agents. On specifying the required 
operations like addition, matrix will produces the result 
by taking the total number of agents and data in the 
matrix. In the Random Model, they have to specify the 
number of mobile agents (workers) along with the matrix 
row and column. It will generate input of A and B with the 
given computational task (for e.g.; addition). The events 
have been processed for the given Addition matrices of 
random model. It will display the amount of workload 
for each worker along with client ID. The given workload 
will distribute to all registered clients by using scheduling 
algorithm. Similarly, for the entire choice model they 
will specify the number of mobile agents and its related 
matrix row and columns. Then, we have to choose 
the computing task for given choice model for them 
scheduling the workload by using efficient scheduling 
algorithm. By using this algorithm, the given data size is 
distributed to the registered client. After the resources are 
fully distributed through the registered client hosts, the 

main host server will update the workload in the main 
hash table, processing time (start time, end time, total run 
time and total elapsed time) between the given numbers 
of mobile workers. 

3.  Experimental Results

During the searching process, message is displayed only for 
registered clients (URL:atp://localhost:2010, URL:atp://
localhost:2011, URL:atp://localhost:2012, URL: atp://
localhost:2013). In the searching technique, when the 
number of the agents and total data size is given as input. 
Then the total work load time, total amount of workload, 
starting and ending response time is calculated. As the 
number of the mobile agent’s increases, total time also 
increases. In the proposed system, task type of searching 
displays as a sample output with different client_ID, total 
time, start and end time in Figure 4. During the task type 
of load distribution phase, client_ID is given starting time 
is calculated.  Client id sent a request to the load manager 
for accessing the resources. The number of the mobile 
agents is specified, total time, elapsed time and worker 
run time is calculated, which  is shown in Figure 5. With 
the help of aglet system, the performance is increased. 
Finally the resource is distributed equally to all the 
registered clients and the workload is updated along with 
the host_id and host_address given in the main host table 
Figure 6.

Figure 4.    Searching task type – client request table.

Figure 5.    Load balancing task type – client request table.

Figure 6.    Host table – work load.



Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology6

An Effective Load Balancing through Mobile Agents using Aglet System

4.  Conclusion

Agent application can occur in an uncontrolled and 
heterogeneous function. Some of the existing technique 
shows us how to achieve load balancing through mobile 
agents. By using aglet system, a Load balancing is achieved 
by distributing the resources to all registered client host 
from the main server host database.  If any unregistered 
client host tries to access the resources main server host 
will deny the request. After the required operation is 
done the corresponding workload, process migration and 
response time are calculated and updated successively. 
Hence with the help of aglets the performance is increased 
by enforcing load balancing without compromising on 
security. 

5.  References
1. Analysis of Large-Scale Topological Properties for Peer-To-

Peer Networks. Date Accessed: 19/04/2004. Available at: 
http://ieeexplore.ieee.org/document/1336545/. 

2. Danny B Lange. Mobile Objects and Mobile Agents: The 
Future of Distributed Computing. Springer Berlin Heidel-
berg; 1998 Jul. p. 1-12.

3. Danny B Lange, Mitsuru Oshima. Mobile Agents with Java: 

The Aglet API, World Wide Web. 1998 Sep; 1(3):111-21.
4. Danny B Lange, Mitsuru Oshima. Programming and De-

ploying JAVA Mobile Agent with Aglets. 1st Edition, Addi-
son-Wesley Professional, 1998 Aug.  

5. Daniel Grousa, Anthony T. Non-Cooperative Load Balanc-
ing in Distributed Systems, Journal of Parallel and Distrib-
uting Computing. 2005 Sep; 65(9):1022-34.

6. Laszlo E, Tornai K, Treplan G, Levendovszky J. Novel Load 
Balancing Scheduling Algo. for Wireless Sensor Networks, 
CTRQ 2011: The Fourth International Conference on 
Communication Theory, Reliability, and Quality of Service 
IARIA; 2011. p. 54-59.

7. Abubakar, Haroon Rashid, Usman. Evaluation of Load Bal-
ancing Strategie, National Conference on Emerging Tech-
nologies; 2004. p. 67-70.

8. Mohsen, Hossein Delda. Balancing Load in a Compu-
tational Grid Applying Adaptive, Intelligent Colonies of 
Ants. Informatica. 2008; 32:159-67.

9. Sandeep Sharma, Singh S, Meenakshi. Performance Analy-
sis of Load Balancing Algorithms. World Academy of Sci-
ence, Engineering and Technology International Journal of 
Computer, Electrical, Automation, Control and Informa-
tion Engineering. 2008; 2(2):367-70.

10. Mueen Uddin, Jamshed Memon, Raed Alsaqour, Asadul-
lah Shah, Mohd Zaidi, Abdul Rozan. Mobile Agent based 
Multi-layer Security Framework for Cloud Data Cen-
ters, Indian Journal of Science and Technology. 2015 Jun; 
8(12):1-10. 


