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Abstract
Background/Objectives: This paper presents a fast real-time multi-object tracking algorithm adopted for maritime 
vessels tracking in UAV videos. Methods/Statistical Analysis: This research applies extended multi-object tracking-by-
detection framework in highly dynamic UAV-captured maritime environment. Propagation is performed using particle 
filter whose particle weights are updated using modified observation model that incorporates a term based upon trackers 
affinity. The latter is also used for trackers grouping, that handles detector inaccuracies, and preventing identity switches 
by means of special propagation mode that is enabled when targets approach each other and start to overlap. Findings: 
Our research has shown that state-of-art multi-tracking algorithm is applicable to maritime vessels real-time tracking in 
UAV videos, provided the use of weak and fast online classifiers, which weakness is compensated by algorithm features 
based on trackers affinity matrix. Improvements/Applications: This paper presents an approach to maritime vessels 
tracking that allows to use fast, but less accurate, simple detectors and classifiers, enabling real-time processing on board 
of small-sized UAVs, while keeping decent precision and accuracy.

1. Introduction 
Unmanned Aerial Vehicle (UAV) video surveillance is an 
area of active research in the last decade1–3. This holds true 
for maritime vessels tracking using various non-aerial 
video surveillance systems, as covered in a survey4.Few 
research teams addressed a problem of maritime object 
detection in full-motion UAV video5,6. However, mari-
time vessels tracking in UAV video is underrepresented 
in scientific literature. In6 tracking block is included into 
algorithm block diagram, but is not covered in details, 
except that authors mention the use of Kalman filter for 
prediction. The lack of articles dedicated to this topic can 
be explained by specifics of this area of application6. These 
specifics that boil down to non-stationary and dynamic 
behaviors of ocean surface, prevent the effective use of 
background subtraction and motion detection tech-
niques. Abrupt scene and perspective changes, caused 

by non-linearity of UAV flight path, add to the problem 
above plus lowers precision of detection-only tracking.

Multi-object tracking algorithms, however, are very 
well presented in literature, since it is an object of active 
research for two decades already. These works mostly 
address moving objects tracking in urban environments. 
State-of-art multi-object tracking algorithms also handle 
issues inflicted by moving platform, crowded scenes, 
illumination variability, and use tracking-by-detection 
approach supported by object contents information in 
order to propagate trackers 7-10. There two main strategies 
for tracking: online tracking7,8 and offline tracking9,10. In 
online tracking approach data is associated using only 
preceding information about trackers and detections, 
while in offline approach a global optimization is per-
formed by taking into account future and past entries. 
Offline algorithms show the best accuracy results when 
tested on most challenging benchmark11. However, online 
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algorithms still have their niche of applications, like UAV 
surveillance, where prompt results are required.

Among search algorithms, that estimate the most 
probable location for a tracker at any given time, par-
ticle filters13 and dense sampling14 show the best results 
for single-object tracking12. Dense sampling, however, is 
a computationally intensive procedure15,16. Particle filter is 
relatively robust to noises and much less time-consuming 
than dense sampling17,18. Since in UAV on-board appli-
cations computational efficiency is a key factor, we use 
particle filter in our tracking algorithm.

In19 we introduced a tracking-by-detection algorithm 
that makes use of velocity, size and location of trackers in 
order to measure affinity between them. This additional 
information is fed to several blocks in our pipeline in 
order to balance accuracy losses caused by weaker (but 
faster) versions of detectors and model classifiers. 

In this work, as our contribution, we adopt state-of-art 
tracking-by-detection framework, based upon detections, 
representation models and trackers affinity matrix, to 
maritime vessels tracking in UAV videos. To the best of 
our knowledge we are first to do so.

2. Concept Headings

2.1 Algorithm Overview
In our previous research19 we used tracking-by-detection 
framework proposed in7 and extended it by incorpora-
tion of trackers’ relationships between each other, based 
on their locations, sizes and velocities. These charac-
teristics play a key role in a decision-making in several 
algorithm steps. Firstly, they are used to group track-
ers. Grouping procedure takes these characteristics into 
account in order to make clusters of trackers, followed by 
conditional merging of these trackers into one entity. This 
mechanism alleviates a problem that arises in these cases, 
where several trackers are initiated for one actual object. 
It happens when detections are triggered on an object 
inaccurately, that leads to the scenario where multiple 
trackers latch to the same target. But in this case, track-
ers’ locations and velocities will become nearly equal after 
some time steps. For UAV applications, performance is a 
critical issue, especially in online tracking, and trackers 
grouping speeds up an algorithm by removing redundant 
trackers that would otherwise take an extra computation 

time to propagate. Relationship between two trackers is 
calculated as an affinity score and put into respective cell 
of the trackers affinity matrix.

Affinity scores are used in particle filter’s weights 
update rule in a form of anti-weight – an extra term that 
always comes with a negative sign. Anti-weights almost 
nullify weights of those particles, that get inside of the 
bounding boxes of non-affine trackers, i.e. trackers which 
physical characteristics differ greatly. This addition to 
observation model makes identity switches less prob-
able, especially for objects with similar shape, size and 
color, like it is shown in Figure 1. This feature plays even 
a bigger role when operating with weak (but fast) repre-
sentation models. 

Figure 1. Vessels with similar shape, size and color that 
would yield almost identical representation models.

If a value, obtained by averaging all of the anti-weights 
for particular tracker, exceeds a certain threshold, a bad 
tracking case mode is enabled for this tracker. This mode 
corresponds to scenarios where targets overlap (com-
pletely or partially). When bad tracking case mode is 
enabled, approximated location becomes the only source 
of information that guides a tracker, since detections and 
classifiers can’t be relied upon during such an event. We 
introduced this mode in19 and tested it mostly on pedes-
trians in cluttered scenes, where it proved to be effective. 
In UAV videos, top views are encountered the most, and 
with such views targets can’t overlap, so this mode may 
seem useless. Nevertheless, side views are also in place, 
especially for remote targets, like it is shown in Figure 2, 
so, we keep this mode for this application as well.
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Figure 2. Overlap situation occurred during a side view of 
remote marine vessels.

Though effects on water surface pose certain prob-
lems to object detection, we still can utilize its image 
properties in order to guide trackers. To do so, we build 
an approximate water mask using simple clustering algo-
rithm (see Section 2.5), and use this mask in order nullify 
likelihoods of those particles that propagated to water. 
This mask need not to be precise and account for glints, 
foam trails and other water surface effects, since its role is 
auxiliary, unlike masks used for blob detection.

2.2 Particle Filter
We keep particle filter as our search algorithm, as we did 
in19. That being said, target state { }yx vvyxX ,,,=  is given 
by coordinates ( )yx,  and velocity components ( )yx vv , . 
Propagation model is given by:

( ) ( ) ( ) ( )yxtvvyxyx
tyxtt ,,,,

11 δ+∆⋅+=
−−             (1)

( ) ( ) ( )yxtyxtyx vvtvvvv ,,,
1

δ+∆⋅=
−

Coordinate and velocity noises, ( )yx,δ  and 

( )yx vv ,δ , respectively, are obtained from zero-mean 

normal distributions. Components of position variance 

( )yx,σ , xσ  and yσ , are derived from tracker’s width 

and height, respectively. Velocity variance ( )yx vv ,δ  is 

given by:

( ) ( ) ( )yxyxyx vvvvvv ,,, τχδ += 		        (2)

where ( )yx vv ,χ  is a noise velocity that is parallel to 
tracker’s current velocity vector (centripetal noise) and 
( )yx vv ,τ  - noise velocity orthogonal to tracker’s current 

velocity vector (tangential noise). Their values depend 
on what abrupt movement patterns are to be handled. 
Large acceleration values (both, positive and negative) 
are better handled with bigger centripetal variance, while 
abrupt change of direction is meant to be handled by big-
ger tangential variance. In UAV videos abrupt changes of 
direction are more probable, that is why tangential vari-
ance is of a bigger value for this particular application. 

Tracker’s life span is determined by initialization, ter-
mination and renewal rules that are the same as we used 
in19. 

2.3 Vessel Detection
For vessel detection we use an algorithm, combined from 
blocks we previously used in other works for detection of 
various objects. We start with regions of interest extrac-
tion by applying MSER algorithm20  to down-scaled image, 
just like we did in21 for pedestrian detection in RGB-D 
data. MSER algorithm extracts blobs followed by approx-
imation by ellipses. Then, ellipses are approximated by 
bounding rectangles that undergo simple grouping and 
filtering by size. Size filtering is used only to remove obvi-
ously large rectangles which dimensions are almost equal 
to image size. Region of interest extraction example is 
shown in Figure 3.

(a)
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(b)
Figure 3. Region of interest extraction: a) maximally stable 
extremal regions approximated by ellipses b) final regions of 
interest obtained after grouping and filtering of rectangles 
that approximate ellipses.

Regions of interest are fed into algorithm based on 
deep autoencoders we proposed in22 for head-shoulder 
detection, but retrained on vessel imagery from CIFAR-10 
database23 and enhanced by regularization procedures that 
provide invariance to orientation and shifts, proposed by 
us in24 and applied in21.Each region is processed separately 
and can be a host to several detections or lack them com-
pletely. For regions illustrated on Figure 3, final detections 
and trackers initialized by them, are shown on Figure 4.

2.4 Data Association
In order to match detection d with a tracker tr we use 
greedy data association algorithm7. General formulae for 
matching score is the same as used in7 :

( ) ( ) ( ) ( ), ,
N

tr
p tr

S tr d g tr d c d p d pα Ν
∈

 
= ⋅ + ⋅ − 

 
∑

,	       (3)

where terms ( )trc d  and ( )
N

p tr
p d pΝ

∈

−∑  are 

representation model score and the normal distribu-

tion ( )2;0; σpd pospos −Ν  calculated as a distance 

between the center of detection d and a particle p, respec-

tively. A gating function g(tr, d) is given by:

(4)( ) ( ),
0

tr d

tr

size sizep p d tr
g tr d sizeΝ Ν

  −
⋅ −  =   




if ( )tr falseΒ =  otherwise

where B(tr) is an Boolean function that returns true if 
a bad tracking mode is enabled (see Sec. 2.7) for particu-
lar tracker. Data association or classifier update are not 
allowed in this mode.

Online combined classifier training technique, pro-
posed by us in19, appeared to be quite effective for UAV 
applications, where performance is of a great value, if we 
want to process all tracking pipeline on-board. The main 
difference from analogous techniques, proposed in8 and 
used in7, consists in that we don’t retrain classifier on each 
frame and do it only when its quality measure drops below 
a certain threshold. It makes classifier weaker, but much 
faster. Such a drop in quality is compensated by observa-
tion model’s anti-weights, as described in Section 2.5.

	
			   (a)							       (b)
Figure 4. Applying autoencoder-based detector: a) detector output b) initialized trackers.
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In order to merge different classifiers (color and tex-
ture) we transform distances between calculated and 
stored models into probabilities and bring it to the range 
of [0 ; 1] by formula:

( )











⋅
−

−= 2

2

2
exp

σ
mdd

P 			         (5)

where, P - score (probability) estimate for particular 
model in the range of [0;1]; d - distance between detec-
tion model and tracked target model in corresponding 
space; md - minimal possible distance for this model, σ  
- sigma for this model.

2.5 Observation Model
Observation model, in general, is kept the same as in19 , 
but got some rework in order to tailor it to maritime sce-
nario:

( ) ( ) ( ) ( )
( )

( )
( )

0)(0
,

=
=Β
=Β








−

⋅−⋅+−⋅
= Ν

Ν

pM
truetr
falsetr

dpp
pwpcdppd

w est

atrtrtr

ptr

µηβ
	 (6)

where, η  and µ  are fixed parameters and remain 
unchanged during entire video-sequence. B(tr) is the 
same indicator function as in (4). Terms of (6) are 
described below. First two cases in (6) are the same as we 
used in observation model in19, and the third one is a new, 
tailored specifically for maritime application. 

Water surface mask M is obtained by clustering pixels 
of downscaled image into two clusters with Expectation 
Maximization (EM) algorithm25. Pixels of largest clus-
ter are considered to be water surface and correspond to 
zero values in mask M (see Figure 5). Hence, according 
to (6), weights of particles that propagate to locations, 
where water mask is zero, are turned to zero. The rea-
soning behind this technique consists in that we restrict 
particle propagation to unoccupied area, thus increasing 
sampling density in the vicinity of objects. When a vessel 
is firmly detected, water surface mask makes tracking a 
bit more accurate. But when detection is amiss or when 
abrupt point of view occurs (due to UAV surveillance 
nature – maritime vessels themselves are very inertial 
objects and don’t produce abrupt movement patters), 
water surface mask can be a problem solver. Surely, this 
mask doesn’t correspond to water surface precisely, as can 
be seen from Figure 5, and even can be worse than that 
due to glitters and other illumination effects. But since it 

is used as auxiliary information for probabilistic approach 
(and particle filter search algorithm is the one), reduc-
ing potential search area even by mere percents can only 
help, provided computing time it takes to build that mask 
is worth it (that is why we perform EM on downscaled 
image).

(a)

(b)
Figure 5. Extracting water surface mask: a) original image b) 
water surface mask.

Detection term ( ) ( )tr trd p p dβ Ν⋅ −  is computed as 
normal distribution PN from the distance between the 
center of detection dtr  and location of the particle P. dtr  
is defined by:

(7)
a

tr
est

d
d

d


= 


if association occurred
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otherwise
where, ad  - associated detection , and estd  - approxi-

mated location of the tracker with no associated detection. 
Location approximation is done by transitioning its pre-
vious location using average velocity vector:

s
pp

v ttt

∆

−
= −− 01





			         (8)

where, t - is a current time, 0t - time gap for averag-
ing (approximately one real second), s∆  - a distance a 
tracker has traveled during [ ]0,1 ttt −−  interval. 

Classifier term ( )trc pη ⋅  is a representation models 
similarity score, described in Sec. 2.4. This score is com-
puted in a location of particle p using current rectangle 
of a tracker. 

Anti-weight term ( )pwa⋅µ  is a negative term and, 

thus, reduces resulting weight ,tr pw . Anti-weight is com-
puted using formulas:

( ) ( ){ }
,

max ,a tr a trtr T tr tr
w p w p tr

′ ′∈ ≠
′=       (9)

( ) ( )( ) ( ) ( )
( )

1 , ,
,

0 , ,
tr

a tr
tr tr

R tr tr p p tr R tr tr
w p tr

R tr tr p box

ρ

ρ
Ν ′ ′ ′− ⋅ − <′ = 

′ ≥ ∈

 	   (10)

( ) ( ) ( ) ( ) ( )( )
max

, , ,
, vel areag tr tr p tr tr p tr tr p tr tr

R tr tr
R

γ υ θΝ′ ′ ′ ′⋅ ⋅ − + ⋅ + ⋅
′ =

(11)
R- is a MM ×  trackers affinity matrix and R(tr, tr') is 

an affinity score of the pair of trackers, which explanation 
is given in our preceding work19. Gating function g(tr, tr') 
is given by:

( ) ( ) ( ), , ,sp ag tr tr g tr tr g tr tr′ ′ ′= ⋅ 	  	    (12)

( ),spg tr tr′  - speed gating function that is given by:

( )
0

, 0
1

tr v tr v

sp tr v tr v

v and v
g tr tr v and v

otherwise

τ τ
τ τ

′

′

< >
′ = < >



	    (13)

where, tr
avgv  and rt

avgv ′ - average velocities given by 
(8); vτ - is a speed threshold under which a target is con-
sidered stationary.

( ),ag tr tr′  - angle gating function that is given by:

( )
0 arccos

,

1

tr tr
v

a tr tr

v v
g tr tr v v

otherwise

ϕ′

′

  ⋅
>   ′ = ⋅  




		     (14)

( )p tr trΝ ′−  from (11) is a normal distribution 
taken from distance between centers if trackers tr and 
tr'. ( ),velp tr tr′  is by (15) and ( ),areap tr tr′  is given by 
(16).

(15)( ) ( )

1

,
arccos

tr v tr v

vel tr tr
tr tr

tr tr

v and v

p tr tr v vp v v p otherwise
v v

τ τ′

′
′Ν Ν

′
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
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( )
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,

min ,
tr tr tr tr
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tr tr

s s S
p tr tr p

s s
′ ′∩

Ν
′

 −
′ =   

 
	  	    (16)

3. Results
Due to the underrepresentation of algorithms for mari-
time vessel tracking in UAV video in scientific literature, 
currently there are no benchmark datasets available. In 
order to assess performance of our algorithm we used 
various UAV videos with maritime vessels, found on 
Youtube and captured with Phantom 3 and 4 drones27. 
These videos feature the following challenges: occlusions, 
non-linear movement patters (usual for any UAV applica-
tion), changes of point of view, water surface glitters and 
unstable illumination effects, foam trails. In these videos 
UAV operator usually focuses on some main ship (see a 
ferry on a forefront on Figures 2–5), which is an objective 
of the filming, with some secondary targets appear in the 
vicinity occasionally, but for a prolonged periods of time 
that allow actual tracking. More examples of such videos 
can be found in28. To evaluate precision and accuracy we 
use CLEAR MOT metrics29 and do it in a way just like we 
did with pedestrian targets in19. In order to obtain ground 
truth we’ve marked up videos manually. Our runtime per-
formance results were obtained on workstation with Intel 
Core2Duo 3GHz with 4GB of memory and on Raspberry 
Pi board with Quad-Core ARM 1,2 GHz processor28, that 
can be installed on light-weight UAVs.

Table 1 shows evaluation results averaged for 23 
videos taken from28. We separated results for main and 
secondary ships tracking, since they differ too much. FP 
rate, though, bears a common portion, caused by false 
detects. Table 2 shows main parameters of our algorithm 
that affect accuracy and computational performance the 
most.

4. Discussion 
In this section we discuss the nature of inaccura-
cies observed during experiments and their effect on 
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numerical results, presented in Table 1. Main ship track-
ing is rather firm in comparison with secondary targets 
for obvious reasons. First of all, main ships are firmly 
detected, because they always appear on forefront and 
their appearances bear distinctive features, extracted 
during deep learning with autoencoders using CIFAR-
10. Nevertheless, sometimes, as mentioned above, they 
fall into several (mainly two) detections. It mostly affects 
MOTP metric (non-precise localization), though, since 
due to tracking grouping, these detections merge after few 
frames, thus, FP metric is not affected much. Low (but 
not-perfect) FN rate for main ships caused by relatively 
low false reject rate of our detector. Couple of identity 
switches are caused by losing a sight of main ship and fail-
ures of re-entry association. 

Secondary ships that mostly appear in the background 
or in docks/ports are both harder to detect and track. In 
many cases secondary ships are being led by representa-
tion model only after they got spotted by detector once at 

some lucky moment. It inputs the most into FN rate. False 
positives are caused by two reasons. First reason con-
cludes in false detects, that mostly occur on landscapes, 
that appear in UAV’s sight, when main ship leaves or 
arrives to the port (this fraction of FP is shared between 
main and secondary ships statistics). The second reason, 
exclusive for secondary ships only, is caused by floating 
trackers that lose their targets due to absence of detection 
and instability of representation models – both are com-
mon for small targets. FP and FN metric would be even 
worse if not for anti-weight term, that prevents trackers 
from jumping on targets that are already occupied by 
non-affine trackers. Largest input to identity switches for 
secondary targets is caused by premature deactivation of 
trackers due to lack of detections and stable representa-
tion models that would otherwise rejuvenate trackers. 
Also, few identity switches for secondary targets are 
caused by occlusions that are not always properly handled 
by bad tracking case mode technique.

Table 1. CLEAR MOT evaluation results
Dataset MOTP MOTA FN FP ID sw. FPS PC FPS Raspberry 

Pi 3
Main ship (filming 
objective)

83.2% 92.1% 2.3% 5.6% 5 23 11

Secondary targets 75.2% 70.9% 15.2% 13.9% 26 - -

Table 2. Main algorithm parameters that affect accuracy and computational performance

Parameter Value Comment
Number of particles 100
α 5 With this target is being tracked by detection term in (3) if detection actually occurs. 

Representation model steps into play when detection is amiss.
β:η:μ 10:1:20 With that, in accordance with observation model (6), propagation is done mostly 

by location likelihood. Anti-weight coefficient μ makes sure that weights of those 
particles, that propagate into non-affine trackers bounding box, are nullified.

Downscale 
coefficient for MSER 
regions of interest 
extraction

4
MSER algorithm is ( )( )nn log(log⋅Ο  algorithm. Down-scaling the image with 
coefficient s, reduces number of pixels by s2, hence, with s << n, virtually making it s2 
faster.

Downscale 
coefficient for EM 
water surface mask

4
EM is ( )kn ⋅Ο for each iteration, where k is a number of clusters. With downscaling 
coefficient of s, we speed up EM by s2 . Again, since water surface mask is used as 
auxiliary source of information that makes particles propagation more stable. 

γ:υ:θ 1:2:1 This makes velocity more influential in affinity score. With that, when a ship falls into 
two or more detections, these detections will be following the same rigid body anyway 
(which means similar velocities), while staying apart from each other for several 
frames. With this coefficient ratio they’ll have a higher chance to become affine and 
merge.
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5. Conclusion 
We have introduced an algorithm for fast multiple mari-
time vessels tracking in UAV videos. To the best of our 
knowledge it is a first attempt to apply state-of-art track-
ing-by-detection framework in this particular highly 
dynamic environment. This work is based on our pre-
vious research aimed at urban (pedestrians and cars) 
objects tracking, but features several enhancements pecu-
liar to maritime UAV applications. This attempt proved 
to be rather successful both accuracy and computation 
performance-wise, since our previous work was aimed at 
developing a tracking algorithm that would yield compet-
itive performance even with weak (hence fast) detectors 
and representation models. Tracking-by-detection frame-
work, with particle filter as a search algorithm, allows 
easy switching between various different applications. 
This flexibility is largely due to probabilistic models for 
data association and observation. By redefinition of exist-
ing and introduction of new specific likelihood terms in 
respective formulas one can manipulate trackers behavior, 
depending on application. Application-specific process 
noise in particle filter propagation rule is also adjustable 
for expected movement patterns. In order to provide fast 
tracking, suitable for real-time implementation on UAV, 
we utilize weak, but fast, online classifiers, whose weak-
ness is compensated by features based on trackers affinity 
score. Overall, our algorithm can be enhanced by adding 
a backup blob detector, separating landscape and skies (by 
horizon line detection, for instance) from water surface. 
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