
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(S1), DOI: 10.17485/ijst/2016/v9iS1/89214, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Delineation and Elucidation of Security Activities in
Agile Software Development

Sushil Kumar1* and Ashish Jolly2

1Department of Computer Science and Engineering, Maharaja Agasen University, Baddi – 174103, Himachal
Pradesh, India; sk93recj@gmail.com

2Department of Computer Science, Government College, Kaithal – 136027, Haryana, India;
ashishjolly76@gmail.com

Abstract
Agile programming advancement process is an arrangement of standards utilized for programming improvement. In Agile
programming improvement the arrangements develop through coordinated effort between self-sorting out, cross-useful
groups using the fitting practices for their unique situation. This paper suggests guidelines that may be followed in agile
software development process. We have conducted a survey approximately 500 agile software developers, around the
globe, have taken part in it. In survey a questionnaire related to the various security activities to be incorporated during
every phase of agile software development were asked. Based on this survey we have accomplished the most compatible
and beneficial security activity that can be incorporated during different phases of agile software development. 80% of
agile developers voted for the initial education which is the important security activity to be incorporated during Pre-
requirement phase. Similarly 75% said that security requirements during requirement phase, 95% opted for risk analysis
during design phase, 80% said coding rules during implementation phase, 62% said identify, perform and implement
security tests in testing phase and 77% said final security review in release phase are to be incorporated during different
phases of agile software development. The Proposed work overcomes the issues in agile model and security by giving a
quick comprehension of the security activities incorporated during different phases of software development. We have
bridge-in, the security gap between traditional waterfall model and in-practice agile development model.

Keywords: Agile Software Development, Agile Security, Software Security, Vulnerability, Waterfall Model

1. Introduction

For programming security is the important aspect1. As of
now, security is a serious problem cause severe because of
the expanded unconventionality, accessibility and exten-
sibility2. Along these lines, the product engineers are
forced to make more secure associations. There had been
a critical augmentation in security related programming
vulnerabilities as indicated in CERT3 statistics as shown

in Figure 1. Billions of dollars go down the drain because
of low quality software produced. The cost is said to be
brought around limiting the blunder rate at each stage in
programming development and evolution4. As an out-
come, the last item ought to cost less over its lifetime4.

Considering the measurements appeared in Figure 1,
there is a need to build up a way to deal with program-
ming advancement and that could promise security at
every period of programming life cycle5. Nevertheless,

Indian Journal of Science and TechnologyVol 9 (S1) | December 2016 | www.indjst.org 2

Delineation and Elucidation of Security Activities in Agile Software Development

settling programming is normally seen as a post improve-
ment movement and very little consideration is paid to it
amid the advancement of programming2. Incorporated of
security parameters with every phase of software develop-
ment life cycle is a must till its completion and till that is
in use6. Since programming grows up through its rich-
ness cycle, programming advancement techniques ought
to give unique regard for the security part of the product1.

Figure 1. Vulnerabilities reported to CERT centre.

Today’s product improvement business requires
rapid programming conveyance from the advancement
squad. In hotel to give fast conveyance of items, associa-
tions make changes from their routine improvement way
to deal with agile development method7. In this manner
changes are done as a push to expand the power of pro-
gramming advancement and are in like manner an after
effect of more online circulated programming items and
stages. Agile software development has impacted on the
process of software development around the globe8.

Although agile method is widely used in the cur-
rent software industry, from a security perspective, this
approach is reported to having many flaws related to
secure software development9. Therefore it is difficult to
put into action in agile model of development.

2. Software Security

Security in software development is an experiment .The
reason for this is that argumentative networked environ-
ment and mobile code threats. The security can further be
classified into two categories10.

•	 Security of Software
•	 Application Security

Security of software is about building secure software
and application security is securing software after devel-
opment

In order to develop better software, we need to plug
the problems during design and execution phase of
software development, rather than taking care of the
problems after application is developed. This kind of
methodology will curtail down the development cost of
a software11.

3. Security Engineering Process

This involves the group of activities achieved for devel-
oping, maintaining and delivering a secure software;
security activities can be either iterative or sequetial12.
The aim is to generate robust, free of bugs software by
using systems, procedures, tools and approaches for
tackling security concerns in several phases of software
development13,14.

Secure software procedures when applied during the
development of software are able to:

•	 Perform well during the disorders by opposing the
manipulation of flaws in the software program or by
enduring the catastrophe.

•	 Damage control from an attack-initiated problem fail-
ure and recuperate rapidly from those failures that the
software was in capable to endure.

4. Vulnerability of Software

The flaws in design, operation and configuration of
software are vulnerability15. There is reduction in the
system information warranty due to software vulner-
abilities.

The people are generally technological aware, so that
attackers can be kept away, they are aware of firewalls,
anti-viruses and various cryptography techniques, but in
spite of all this, attacks are unavoidable. The reason for
this is insecure software16. The attackers generally exploit
the security loop holes. The vulnerability arises because
of defects during design and implementation phase of
software development25. The major weaknesses of soft-
ware comprise overflow of buffer, number over flow,
race condition, format string bugs, poor unique number
generator, SQL injections, Denial Of Service (DOS) and
misplaced trust17,18.

Figure 2 below shows how a programmer creates
bugs in the software development processes and how an
attacker exploits the vulnerability found in a program.

Sushil Kumar and Ashish Jolly

Indian Journal of Science and Technology 3Vol 9 (S1) | December 2016 | www.indjst.org

Figure 2. Software defects.

•	 Bug - An error, flaw, failure or fault in a computer pro-
gram that causes it to produce an incorrect result, or to
behave in unintended ways.

•	 Vulnerability - A weakness which allows an attacker to
reduce a system’s information assurance19.

•	 Exploit - Use of software, data, or commands to
“exploit” a weakness in a computer program to carry
out some form of nasty intent.

5. Agile Development
Methodology

Two C’s i.e. communication and coordination plays vital
role in successful implementation of project. So therefore
there has to be regular communication and coordination
between all the stakeholders of the project20,21. Software
development is broadly classified into two categories:
waterfall development approach and agile development
approach.

 Waterfall model23, frequently utilized as a part of pro-
gramming improvement procedure, is an effective outline
process which is flowing downwards (like a waterfall)
through the phases of conception, initiation, analysis,
design, construction, testing, implementation and main-
tenance22.

Then simply again, software model is “an itera-
tive and progressive way to cope with programming
progression which is self-sorting away groups inside a
government system with “simply enough” function that
offer stop notch arrangements in a financially savvy and
auspicious way which fulfills the ever growing demand
of change23,24.

In the latest current few years, substantial parts of soft-
ware business have moved programming improvement

strategy from an inflexible design to a far more adapt-
able agile programming advancement process25.
Many agile software development methodologies like
extreme programming (XP), scrum, Feature Driven
Development (FDD), lean software development, crys-
tal methodologies, Dynamic Systems Development
Methodology (DSDM), are available26. While there
are numerous contrasts between these philosophies
they rely upon some normal standards, most advance
improvement, cooperation, joint effort and proce-
dure versatility for the duration of the life span of the
undertaking.

The Twelve principles of agile doctrine27,28:

•	 Consumer loyalty through ahead of schedule and
uninterrupted delivery of valuable software

•	 Welcome evolving necessities, even past due being
developed

•	 Deliver working software usually, from two or three
weeks to several weeks, with a propensity to the
shorter timescale

•	 Specialists and engineers must interact personally
every day all through the endeavor

•	 Build tasks around spurred people, give them environ-
ment and strength ,they need and trust them to care
for business

•	 Face-to-face discussion is the most productive and
successful technique for passing on data to and within
an improvement group29.

•	 Working applications are the essential parameter of
advancement

Sustainable development, Simplicity, Self-sorting out
groups which meet at regular intervals for finding out the
best possible solution to a problem. These are the features
that distinct agile methodology from waterfall develop-
ment method30.

As depicted in Figure 3 agile software designers work
intimately with their partners and customers to under-
stand their requirements. Additionally, they utilize pair
programming to realize and test their solution. Then,
the patron gives expert advice on the solution provided
and in this way infusing deformities each and every
stage during the development. This implies that agile
designers are highly skilled for the accomplishment of
project31,32.

Indian Journal of Science and TechnologyVol 9 (S1) | December 2016 | www.indjst.org 4

Delineation and Elucidation of Security Activities in Agile Software Development

Figure 3. Agile methodology for software development.

Tasks are broken into small fragments34 as shown in
Figure 3 (a) List is prepared for the entire Do’s” and prior-
ity is accordingly assigned. The module is accomplished
based on priority accorded for entire software develop-
ment life cycle. (b). after completion of iterations on
various phases of SDLC an operational software product
is shown to patrons for feedback (c). The iterations may
not improve the functionality of the released version, but
actually it removes the bug. Thereby reducing the risk
and aids the project to acclimate to deviations swiftly. (d).
multiple iterations are required for release of new featured
software product35.

6. Agile Security

The analysts’ claim that agile methods are insufficient for
security critical projects but due to competitive reasons
they are widely used for web and network related develop-
ment36. One of the misapprehension can be that security
hinders the expansion process another important reason
can be that there is no specific security procedures specifi-
cally designed for agile software development37. Therefore
agile software development is not having no option than
to use security procedures designed for waterfall model
based software development. These heavy weight secu-
rity parameters are not valid for agile development, as
they are designed specifically for waterfall model based
development38. This might be possible due to dissimilar
operations between traditional SE Operations and Agile
operations. This means that agile methods support brief
progress boosts that adapt easily to change, while in SE
processes change is difficult and bugs are curtailed down
by using heavy security parameters38,39. But due to need of
industry we need to follow agile software development by

providing high quality security parameters without alter-
ing the agility of a process.

7. Research Methodology

The blind of quantitative and qualitative processes are
used for this research, the literature review is carried out
and important security and agile characteristics40 are iden-
tified and accordingly survey is designed41. The research
process is depicted in the following subcategories.

Figure 4. Research design overview.

8. Aims and Objectives

The aim of survey is to identify important security activi-
ties in every phase of software development, as prevalent
in recent software industry and to recommend attuned
security activities for agile software development model.

The goals are accomplished by the following:

1. Agile methodology security features are being studied.
2. Traditional software engineering processes are evalu-

ated
3. Important software engineering operations are identi-

fied
4. Security activity accomplished by software engineer-

ing operation is to be pin pointed.
5. Security activities are categorized as per different

development stages.
6. Survey form is drafted based on the discovered secu-

rity activities
7. Survey is carried out.
8. Propose the most attuned security achievements to

the model
9. Suggest the future scope for improvement.

Sushil Kumar and Ashish Jolly

Indian Journal of Science and Technology 5Vol 9 (S1) | December 2016 | www.indjst.org

9. Survey Construction

The survey is designed on Google form. A study con-
sisting of 06 questions is developed. All questions were
referred to various security activities to be incorporated
during every stage of agile software development. Before
taking up the survey the respondents are required to fur-
nish details regarding their Name, corporation, and email
id and so forth In addition, a cover sheet elucidating the
perseverance of the analysis and techniques and the inter-
pretation of every security activity is appended. Due to
confidentiality25 and promise to share the previous survey
result to the respondent, helped us to get good response
from the participants. A lot more than 450 Software
Professionals have participated in this study.

The outcome of the study is as follows:

Figure 5. Security incorporated during pre-requirement
phase.

Figure 5. Shows that the security activities which
are important during pre-requirement phase are Initial
Education and security metrics.

Figure 6. Security activities incorporated during
requirement phase.

Figure 6. Shows that the security activities which are
important during requirement phase are security require-
ment and document security.

Figure 7. Security activities incorporated during design
phase.

Figure 7. Shows that the security activities which are
important during design phase are risk analysis, apply
security principles to design and perform security analy-
sis of system requirements & design.

Figure 8. Security activities incorporated during
implementation phase.

Figure 8. Shows that the security activities which are
important during implementation phase are Coding rules
and Security Tools.

Figure 9. Security activities incorporated during testing
phase.

Figure 9. Shows that the security activities which are
important during testing phase are Identify Perform and
Implement Security Tests and Code Review.

Indian Journal of Science and TechnologyVol 9 (S1) | December 2016 | www.indjst.org 6

Delineation and Elucidation of Security Activities in Agile Software Development

11. References
1. Keramati H, Mirian-Hosseinabadi SH. Integrating software

development security activities with agile methodologies.
In Institute of Electrical and Electronics Engineers (IEEE)
/ACS International Conference on Computer Systems and
Applications; 2008 Mar 31. p. 749–54.

2. Siponen- M, Baskerville R, Kuivalainen T. Integrating secu-
rity into agile development methods. In the Proceedings
of the 38th Annual Hawaii International Conference on
System Sciences, Institute of Electrical and Electronics
Engineers (IEEE); 2005 Jan 3. p. 185a.

3. CERT statistics [Internet]. 2016 [updated 2016 Sep 27;
cited 2016 Oct 7]. Available from: https://www.cms.
gov/Research-Statistics-Data-and-Systems/Monitoring-
Programs/Medicare-FFS-Compliance-Programs/CERT/
index.html?redirect=/cert.

4. Azham Z, Ghani I, Ithnin N. Security backlog in scrum
security practices. In Institute of Electrical and Electronics
Engineers (IEEE) 5th Malaysian Conference in Software
Engineering (MySEC); 2011 Dec 13. p. 414–7.

5. Beznosov K, Kruchten P. Towards agile security assur-
ance. In the Proceedings of the Association for Computing
Machinery (ACM) workshop on New Security Paradigms;
2004 Sep 20. p. 47–54.

6. Musa SB, Norwawi NM, Selamat MH, Sharif KY. Improved
extreme programming methodology with inbuilt security.
In Institute of Electrical and Electronics Engineers (IEEE)
Symposium on Computers Informatics (ISCI), Kuala
Lumpur; 2011. p. 674–9.

7. Zurko ME, Simon RT. User-centered security. In the
Proceedings of the Association for Computing Machinery
(ACM) Workshop on New Security Paradigms; 1996 Sep
17. p. 27–33.

8. Wäyrynen J, Bodén M, Boström G. Security engineering
and extreme programming: An impossible marriage?. In the
Conference on Extreme Programming and Agile Methods,
Springer Berlin Heidelberg; 2004 Aug 15. p. 117–28.

9. Davis N. Secure software development life cycle processes:
A technology scouting report. Carnegie Mellon University,
USA; 2005 Dec. p. 1–23.

10. Chivers H, Paige RF, Ge X. Agile security using an incre-
mental security architecture. In International Conference
on Extreme Programming and Agile Processes in Software
Engineering, Springer Berlin Heidelberg; 2005 Jun 18. p.
57–65.

11. Bartsch S. Practitioners’ Perspectives on Security in Agile
Development. In Sixth International Conference on
Availability, Reliability and Security (ARES), Institute of
Electrical and Electronics Engineers (IEEE); 2011 Aug 22.
p. 479–84.

Figure 10. Security activities incorporated during release
phase.

Figure 10. shows that the security activities which are
important during release phase are Final Security Review
and Incident Response Planning.

The following are the finding related to most com-
patible and beneficial security activity that can be
incorporated during different phases of Agile Software
development.

Table 1. Compatible security activities during various
software development phases
Sr.
no

Software development
Phase

Compatible Security
Activity

1. Pre-Requirement Phase Initial Education
2. Requirement Phase Security Requirement
3. Design Phase Risk Analysis
4. Implementation Phase Coding Rules
5. Testing Phase Identify, Perform and

implement security tests
6. Release Phase Final Security Review

10. Conclusion

Security is a critical quality parameter, so cannot be
overlooked and must be taken care during software
development life cycle. As such there is no secu-
rity processes specifically designed for agile software
development, therefore the security aspect is slightly
ignored. The study shows that agile industry is forced
to use traditional waterfall SE processes for produc-
ing dependable software. The study which we have
carried out identify the important security activities
phase wise ,which once integrated during every phase
of Software engineering process will build good quality
secure agile software.

Sushil Kumar and Ashish Jolly

Indian Journal of Science and Technology 7Vol 9 (S1) | December 2016 | www.indjst.org

12. Singhal A. Integration analysis of security activities from
the perspective of agility. In Institute of Electrical and
Electronics Engineers (IEEE) Agile India; 2012 Feb 17. p.
40–7.

13. Zadeh J, De Volder D. Software development and related
security issues. In the Proceedings of the Institute of
Electrical and Electronics Engineers (IEEE) SoutheastCon;
2007 Mar 22. p. 746–8.

14. Gilliam DP, Wolfe TL, Sherif JS, Bishop M. Software secu-
rity checklist for the software life cycle. In the Proceedings
of the Twelfth Institute of Electrical and Electronics
Engineers (IEEE) International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WET ICE); 2003 Jun 9. p. 243–8.

15. Gregoire J, Buyens K, Win BD, Scandariato R, Joosen W. On
the secure software development process: CLASP and SDL
compared. In the Proceedings of the Institute of Electrical
and Electronics Engineers (IEEE) Computer Society Third
International Workshop on Software Engineering for
Secure Systems; 2007 May 20. p. 1.

16. De Win B, Scandariato R, Buyens K, Grégoire J, Joosen W.
On the secure software development process: CLASP, SDL
and touch points compared. Information and Software
Technology. 2009 Jul 31; 51(7):1152–71.

17. Miyachi C. Agile software architecture. Association
for Computing Machinery (ACM) SIGSOFT Software
Engineering Notes. 2011 Mar 14; 36(2):1–3.

18. Ge X, Paige RF, Polack FA, Chivers H, Brooke PJ. Agile
development of secure web applications. In the Proceedings
of the Association for Computing Machinery (ACM) 6th
international conference on Web engineering; 2006 Jul 11.
p. 305–12.

19. McGraw G. Building secure software: better than protect-
ing bad software. Institute of Electrical and Electronics
Engineers (IEEE) Software. 2002; 19(6):57–8.

20. McGraw G. Software security. Institute of Electrical and
Electronics Engineers (IEEE) Security and Privacy. 2004
Mar; 2(2):80–3.

21. Mead NR, Allen JH, Barnum S, Ellison RJ, McGraw
G. Software Security Engineering: A Guide for Project
Managers. Addison-Wesley Professional; 2004 Apr 21.

22. Ambler S. Agile modeling: effective practices for extreme
programming and the unified process. John Wiley and
Sons; 2002 Aug 14.

23. Sletholt M, Hannay J, Pfahl D, Langtangen H. What do
we know about agile practices in scientific software devel-
opment. Computing in Science and Engineering. 2011;
14(2):24–37.

24. Benediktsson O, Dalcher D, Thorbergsson H. Choosing
a development life cycle: Comparing project and prod-
uct measures. International Conference on Software and

Systems Engineering and their Applications. 2004 Nov 30;
1(3):1–14.

25. Flechais I, Sasse MA, Hailes S. Bringing security home: a
process for developing secure and usable systems. In the
Proceedings of the Association for Computing Machinery
(ACM) workshop on New security paradigms; 2003 Aug
13. p. 49–57.

26. McGraw G. Software security: building security in.
Addison-Wesley Professional; 2006.

27. Baca D, Petersen K, Carlsson B, Lundberg L. Static code
analysis to detect software security vulnerabilities-does
experience matter?. In Institute of Electrical and Electronics
Engineers (IEEE) International Conference on Availability,
Reliability and Security (ARES); 2009 Mar 16. p. 804–10.

28. Goertzel KM, Winograd T, McKinley HL, Holley P,
Hamilton BA. Security in the software lifecycle. Making
Software Development Processes—and Software Produced
by Them—More Secure; 2006 Aug. p. 1–9.

29. Dyba T, Dingsoyr T. What do we know about agile soft-
ware development?. Institute of Electrical and Electronics
Engineers (IEEE) software. 2009 Sep; 26(5):6–9.

30. Davis N, Humphrey W, Redwine ST, Zibulski G, McGraw
G. Processes for producing secure software. Institute of
Electrical and Electronics Engineers (IEEE) Security and
Privacy. 2004 May; 2(3):18–25.

31. Daud MI. Secure software development model: A guide
for secure software life cycle. In the Proceedings of the
International Multi Conference of Engineers and Computer
Scientists. 2010 Mar 17; 1:17–19.

32. Bhardwaj D. Scrumming it up. A Survey on Current
Software Industry Practices; 2010.

33. Buyens K, Scandariato R, Joosen W. Process activities sup-
porting security principles. In Institute of Electrical and
Electronics Engineers (IEEE) 31st Annual International
on Computer Software and Applications Conference
(COMPSAC). 2007 Jul 24; 2:281–92.

34. Kitchenham B. Procedures for performing systematic
reviews. Joint Technical Report, Keele University, UK. 2004
Jul; 33(2004):1–26.

35. Bhatia MP, Kumar A, Beniwal R. Ontologies for software
engineering: past, present and future. Indian Journal of
Science and Technology. 2016 Mar 22; 9(9):1–16.

36. Su Y, Tang H. Construct stereoscopic teaching system of
software engineering course based on CDIO. Indian Journal
of Science and Technology. 2012 Dec 1; 5(12):3788–91.

37. Wankhede HS, Kiwelekar AW. Qualitative assessment of
software engineering examination questions with bloom’s
taxonomy. Indian Journal of Science and Technology. 2016
Feb; 9(6):1–7.

38. D’Souza MJ, Rodrigues P. Extreme pedagogy: An agile
teaching-learning methodology for engineering education.

Indian Journal of Science and TechnologyVol 9 (S1) | December 2016 | www.indjst.org 8

Delineation and Elucidation of Security Activities in Agile Software Development

Indian Journal of Science and Technology. 2015 May 1;
8(9):828–33.

39. Alshareet OM. An empirical study to develop a Decision
Support System (DSS) for measuring the impact of qual-
ity measurements over Agile Software Development (ASD).
Indian Journal of Science and Technology. 2015 Jul 7;
8(15):1–17.

40. Gandomani TJ, Nafchi MZ. Agility assessment model to
measure agility degree of agile software companies. Indian
Journal of Science and Technology. 2014 Jul 23; 7(7):955–9.

41. Abdelhaq M, Hassan R, Ismail M. A study on the vulner-
ability of AODV routing protocol to resource consumption
attack. Indian Journal of Science and Technology. 2012 Nov
1; 5(11):3573–7.

