
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/105607, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Metrics to Develop High Quality Software
Sanjay Kumar1*, Rahul Rishi2 and Rajkumar2

1University Campus School MDU, Rohtak - 124001, Haryana, India; sheoranincampus@gmail.com
2University Institute of Engineering and Technology MDU, Rohtak - 124001, Haryana, India;

rahulrishi@rediffmail.com, rajyadav76@rediffmail.com

Keywords: Development Phases, Productivity, Software Development, Software Metrics, Quality

Abstract
Objectives: The ultimate goal of the proposed metrics is to develop a quality software product, which is possible only
when the product is certified at the end of each phase, so that there will be no place for errors and faults. Methods/
Statistical Analysis: Project A and B are “School Management Software” in C++ language. The project A is developed
using the “Software quality and productivity enhancement model” procedure and verified by metrics at every phase of
development and maintenance whereas project B is developed in general procedure by another group. Both the software
projects are observed for six months under similar work and conditions. Metrics are applied on observations from time
to time and compared. Findings: Results from proposed metrics certify that undefined (hidden) task in product SRS
or design phase constitute the major risks associated (product failure, quality, productivity etc.) with the product. Poor
requirement identification and management laid greater role in product failure. It is certified in this paper that increase in
the value of product failure % decrease the quality and productivity of product. The product whose failure rate is greater
than 1% is risky to use, this value varies as per the product use and its working environment. Product effectiveness curve
help the user in decision making regarding the working process of the software process, if it moves downward continue the
use, but if it moves upward after a time period then the product should be abort or replaced. In this paper the application
of proposed metrics on small project in different phases of its development, prerelease stage and in maintenance of the
product enhance the quality and productivity of the product. Application/Improvements: The proposed metrics are
applied on small projects; they can also be applied on large, complex software products. The application of the proposed
metrics reduces the risk associated with the product that enhances the product quality.

1. Introduction
Quality of software can be controlled and improved easily
with the help of metrics. Metrics are that measuring units
that determines the standards of any project, process and
product. Metrics provides the basic comparison between
the software products and also provide the information to
the developer as well to the user that given software is as
per the requirements or not. On the basis of reports gen-
erated by the application of metrics the software product
is accepted or declined. Quality is directly proportional
to reliability and reusability, as these increases the quality
also increases1. Quality of any product affects its produc-
tivity, as quality increases productivity also increases,
and this brought software metrics to the forefront2,3. This

research paper focuses on different views on software
quality. A quality product is achieved when the quality
is achieved in its all phases of development. Most suit-
able quality model and number of metrics are applied in
every phase of development starting from requirement
phase then to design phase, coding phase, testing phase
etc. the results at the end of each phase is calculated and
evaluated, compared to increase the reliability, quality
and productivity of the product. Software reusability also
helps to increase the reliability, quality and productivity.

2. Object Oriented Metrics
There are number of object oriented metrics available in
literature such as CK metrics, Li and Henry metrics and

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 2

Metrics to Develop High Quality Software

MOOD metrics4. The Object Oriented (OO) metrics are
used to determine the quality and productivity of object
oriented software products. There are a number of qual-
ity attributes that determine the quality5,6 of software such
as reusability, understability, defect density and main-
tainability etc. Now with the requirement of time more
and more relation between these qualities attributes to be
measured between them with more accuracy.

3. Motivation Behind the
Proposed Work
Software quality focuses four basic areas; these are prod-
uct, project quality, process and post production quality. It
can be described in five different perspectives: user view,
transcendental view, manufacturers view, product view
and value based view7. The majority of the current met-
rics8,9 measure the quality of product when the product is
completely developed and ready to deliver. At this level
of product it is difficult to make effective modification in
the product, if maid then it is costly, time consuming and
extra efforts and expertise. Quality must be monitored
from the early phases of development such as require-
ment analysis, design, implementation and maintenance
phases. To analyze the product size, performance, com-
plexity, design features, performance, and the level of
quality the developer uses the product metrics.

To enhance the software development and main-
tenance process, it is better to use process metrics. The
process metrics also helps to determine the effort level
and effectiveness of the development process. To deter-
mine the project cost, execution time, scheduling and
productivity10,11 of any project or product, project met-
rics12 are used. There are metrics that belongs to more
than one category. Daskalantonakis13 well-articulated
and developed the Motorola’s software metrics program,
following the work of14, identified the goal, formulated
the questions15 in quantifiable terms and metrics were
designed. A number of metrics and models are presented
by software developers to enhance the quality.

4. Proposed Metrics
Project A and B are “School Management Software” in
C++ language. Project A is designed as per the require-
ment of “University Campus School, MDU Rohtak”
whereas the project B is developed by another group.

The project A is developed using the “Software quality
and productivity enhancement model16.” procedure. Both
the software projects are observed for six months under
similar work and conditions. Metrics are applied on obser-
vations from time to time and compared17. To develop the
quality product quality metrics are applied in every phase
of development. In proposed model16 this phase includes
Define task, underline task, task defects etc. The number
of undefined task (hidden task or the task that are not
properly defined or understood) are studied. In the devel-
opment of this project clients are involved in every phase
of development. Project is certified at every phase, so that
maximum errors or faults are removed at base level18. The
hard work done in early phases provide better and easy
work for next phases. The number of failure that arrives
in the project due to these undefined tasks is studied and
their relation is considered as initial failure rate.
Initial Failure Rate =

=

 = =1.75
Objective: the objective of this metric is to find the

maximum undefined terms or tasks in the product.
When it should be measured: It should be measured

while designing SRS or before the design phase.
As per the requirement of the customer the SRS is

designed for proper management of requirement. As
the entire requirement of the customer are properly
defined and as per the requirement, the risk associated
with all requirement as well as to the project are studied
by applying cause and effect diagram. The requirement
or the processes related to the highest risk are identified
and their alternate solutions are considered16. Before the
delivery of the final SRS, fault prediction model is applied
on it. It evolves the maximum faults and validates it on
every boundary analysis. After completion of SRS the cer-
tification of SRS is done as

Certification of SRS Failure Rate =

 = = 0.0427

Indian Journal of Science and Technology 3Vol 9 (48) | December 2016 | www.indjst.org

Sanjay Kumar, Rahul Rishi and Rajkumar

Objective: the objective of this metric is to find the
standard of product SRS.

When it should be measured: It should also be mea-
sured in design phase or before the design phase.

The above metrics help to decide whether the SRS
designed is up to the standards of the project or not. If it is
ok, move to design phase otherwise review the SRS again.
On the basis of the final SRS the detailed design is done.
This is the phase in which logical design is converted to
the physical design. A number of tools and techniques that
are used to analyze the system design such as Flowchart,
Data Flow Diagram (DFD), Data dictionary, Decision
table and Decision tree etc. After completion of design
phase, it is certified as

Certification of Architectural Design =

 = =0.0752
Objective: The objective of this metric is to find the

effectiveness of the design. Path testing, cause and effect
diagram etc. technique can be used to find faults in design
phase.

When it should be measured: It should be measured
after design phase or before the design phase.

This metrics helps to validate the architectural design
of the proposed project. If the design is up to the level it
is moved for coding phase otherwise it is reviewed again
for further necessary actions or modifications. During
this phase of product development, the work is divided
in modules/units and actual coding is started. This is
programming phase of the project in which the program-
mer converts the program specifications into computer
instructions. It’s a crucial stage of project where the
defined procedures are transformed into control specifi-
cations with the help of a computer language. Programs
developed during this phase coordinate the data move-
ments and control the entire process in project. Coding
phase is certified as

Certification of coding Failure Rate =

 = = 0.2903

Objective: the objective of this metric is to find the
maximum error, faults bugs in the individual modules
and then in components after coding them.

When it should be measured: It should be measured
in testing phase or before the testing phase.

The above metric certify the coding phase. Metrics
value helps us to check the level of coding phase. As the
coding phase of the product is over, it is tested against
the requirements to make sure that the product is actu-
ally solving the needs addressed and gathered during the
requirement phase. It brings all the pieces of the project
together into a special testing environment, then checks
for errors, bugs and interoperability. During this phase
of development all types of functional testing like unit
testing, integration testing, system testing, acceptance
testing are done with non-functional testing such as
defect testing, path testing etc. As the testing phase over it
is certified, whether the product so obtained is up to the
level or not.

Number of Failure per unit (Failure Rate)=

 = 0.0537

Figure 1. Comparison of school projects A and B.

Objective: The objective of this metric is to Verify
and Validate the product on its boundary conditions and
other inputs.

When it should be measured: It should be measured
after testing phase or before the final delivery of product.

The testing team should be different from develop-
ment team to find the maximum errors, bugs or faults.
The above metric certify the testing phase. It verifies and

http://istqbexamcertification.com/what-is-functionality-testing-in-software/
http://istqbexamcertification.com/what-is-unit-testing/
http://istqbexamcertification.com/what-is-unit-testing/
http://istqbexamcertification.com/what-is-integration-testing/
http://istqbexamcertification.com/what-is-acceptance-testing/
http://istqbexamcertification.com/what-is-acceptance-testing/
http://istqbexamcertification.com/what-is-non-functional-testing-testing-of-software-product-characteristics/

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 4

Metrics to Develop High Quality Software

validate the project at all levels and all boundary values.
When the project satisfies the entire user’s requirement
and is free from bugs and errors, the implementation
phase begins. The Figure 1 shows the comparison of two
similar projects and their certification on basis of these
metrics. Project A is developed for University Campus
School by using “Software Quality and productivity
enhancement model” whereas Project B is developed
earlier of some other school.The comparison in Figure 1
shows that the product A has lesser failure rate as com-
pared to product B that results quality of product A is
higher than that of product B.

Product Failure Rate =

 = =0.0013
Product Failure Per cent =

 = =0.13
Objective: The objective of theses metrics is to find

the standard of the final product. If the value of product
failure is less than 0.01 or 1% then the product is suitable
for use. This percentage also varies from product to prod-
uct and its application area.

When it should be measured: it should be measured
before the delivery of final product for the satisfaction of
the developer and customer or user.

Implementation is that stage of a project during which
theory is turned into real practice. As the product is fully
developed, before the final release of the product, to
enhance the quality19,20 of the product, pre-release testing
is required in the real field and real conditions. Although
the developers have done their best, but still it must be
assumed that something can go wrong at the worst pos-
sible moment and be prepare to switch gears quickly.
Following metrics can be applied in such situations.

Fault Tracking Metrics =

This metric helps to track the fault and remove that
fault by using minimum efforts13.

Objective: the objective of this metric is to find the
fault using minimum effort.

When it should be measured: it should be used
whenever we have fault in any area and that area is not
recognized.

Requirement Maintenance Metrics =

Objective: The objective of this metric is to maintain
the maintenance record.

This metrics helps to define the maintenance work
done in the product. Increased value of the requirement
maintenance metric represents that the product was not
up to the customer expectation.

Requirement Updation Metrics	 =
(Number of requirement modified or during the month)

(Total number of functional requirement modified + number of Functional requirement upda)

Objective: The objective of this metric is to maintain
the modification and updation record.

This metrics provide the information regarding the
later modification made in the product to satisfy the cus-
tomer or as per required by time and conditions. .

Figure 2. The number of software modification or updation
in first six months of software use.

Once when the customers starts using the developed
system then the actual problems comes up and needs to
be solved from time to time. The feedback is taken from
the user for any modification if however required. Figure
2 shows the comparison of the projects modifications.
The review of the system is done

Indian Journal of Science and Technology 5Vol 9 (48) | December 2016 | www.indjst.org

Sanjay Kumar, Rahul Rishi and Rajkumar

•	 To know the full capabilities of product.
•	 To study the performance.
•	 To maintain the record of all updation and modi-

fications.
•	 Product Effectiveness Curve:- Draw the graph of

fault per month for the product ahead of imple-
mentation

Objective: the objective of this metric is to check
the effectiveness of product. If the number of faults are
increasing every month then

This curve helps the developer as well as user for
further maintenance and for making future decision 13
regarding the product. Figure 3 show that project B has
arrives more errors as compared to project A. If the curve
moves downward then the product should be repaired or
maintenance work should apply but if the curve moves
constantly upward then the product should be replaced.

Figure 3. The number of errors in two projects.

In Figure 3, Project A exhibited lesser error or faults
compared to other software.

5. Conclusion
The comprehensive results certify that project A has lesser
failure rate, so project A has high quality and productiv-
ity as compared to project B. To develop a high quality
product, the developer has to identify the right software
development process (software development Model) as
per the requirement and identify right metrics as per
needs for testing and evaluation. Software with High

quality being reliable, maintainable, easily integrated, well
supported and portable also fulfills the needs of users and
satisfies them. To develop high quality software within
a limited cost and time then the developer should use
good metrics from the initial phase of development that
is requirement phase to avoid the maximum fault and
rework. The proposed metrics applied on small project,
the application of these metrics on more than ten small
as well as large projects provides the numerical boundary
value of each metric that helps the software developers in
future to certify the characteristics of the product in every
phase of the development.

6. References
1.	 Jethani K. Software quality- Getting right metrics, getting

metrics right. Tata Consultancy Services Limited; 2008. p.
1–11.

2.	 Jose G, Joseph J. Test metrics and KPI’s. UST Global; 2014.
3.	 What is more important: Software quality or productivity,

Iron Triangle, Scott Ambler. Available from: http://www.
ambysoft.com/essays/brokenTriangle.html

4.	 Kumar S. Metrics to determine the quality and productivity
during software development. IJCSSE. 2016; 5(8):175–82.

5.	 Rajesh S, Chandrasekar A. An efficient object oriented
design model: By measuring and prioritizing the design
metrics of UML class diagram with preeminent quality
attributes. Indian Journal of Science and Technology. 2016
Jun; 9(21). DOI: 10.17485/ijst/2016/v9i21/95147.

6.	 Bhatia MPS, Kumar A, Beniwal R. Ontologies for software
engineering: past, present and future. Indian Journal of
Science and Technology. 2016 Mar; 9(9). DOI: 10.17485/
ijst/2016/v9i9/71384.

7.	 Stephen H, Kan K. Pearson’s software quality metrics over-
view metrics and models in software quality engineering
USA; 2002.

8.	 Rawat MS. Survey on impact of software metrics on soft-
ware quality. IJACSA. 2012; 3(1):137.

9.	 Vijayalakshmi P, Luv PK, Soni AK. Rainwater runoff
estimation using empirical formulae computed in c pro-
gramming software for Puriliya District of West Bengal.
Indian Journal of Science and Technology. 2016 Jan; 9(4).
DOI: 10.17485/ijst/2016/v9i4/55229.

10.	 Singh G. A study of software metrics. IJCEM. 2011; 11:1–6.
11.	 Kaur S. Software metrics and metric tools-a review.

International Journal on Recent and Innovation Trends in
Computing and Communication. 2015; 3(4):2076–9.

12.	 Pusala R. Operational excellence through efficient software
testing metrics. Infosys View Point; 2006 Aug.

http://www.ambysoft.com/essays/brokenTriangle.html
http://www.ambysoft.com/essays/brokenTriangle.html
http://dl.acm.org/author_page.cfm?id=81100134745&coll=DL&dl=ACM&trk=0&cfid=873454083&cftoken=81790653

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 6

Metrics to Develop High Quality Software

13.	 Daskalantonakis MK. A practical view of software mea-
surement and implementation experiences within
Motorola. IEEE Transactions on Software Engineering.
1992; 18(11):998–1010.

14.	 Basili VR, Weiss DM. A methodology for collecting valid
software engineering data. IEEE Transactions on Software
Engineering. 1984; 10(1):728–38.

15.	 Wankhede HS, Kiwelekar AW. Qualitative assessment of
software engineering examination questions with bloom’s
taxonomy. Indian Journal of Science and Technology. 2016
Feb; 9(6). DOI: 10.17485/ijst/2016/v9i6/85012.

16.	 Kumar S, et.al. Software quality and productivity enhance-
ment model. IJERD. 2016 Nov; 12.

17.	 Priyadharshini V, Malathi A. Analysis of process mining
model for software reliability dataset using HMM. Indian

Journal of Science and Technology. 2016 Jan; 9(4). DOI:
10.17485/ijst/2016/v9i4/52931.

18.	 Sanjay Kumar et.al. Spiral Increment Reuse (SIR) Software
Model, International Journal of Computer Science and
Software Engineering (IJCSSE), Volume 5, Issue 1, 2016
January ISSN (Online): 2409-4285 www.IJCSSE.org Page:
5-10

19.	 Chamoli S, Tenne G, Bhatia S. Analysing software metrics
for accurate dynamic defect prediction models. Indian
Journal of Science and Technology. 2015 Jan; 8(S4):96–100.

20.	 Rashid E, Patnayak S, Bhattacherjee V. Estimation and
evaluation of change in software quality at a particular
stage of software development. Indian Journal of Science
and Technology. 2013 Oct; 6(10).

