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Abstract
Multiple Input Multiple Output (MIMO) low complexity receiver which utilizes the compressive sensing detection for Spatial 
Modulation in large scale MIMO system in order to reduce the system complexity. In conventional MIMO system; huge amount 
of antennas is used at both ends to exploit the multipath propagation. This system maximizes the throughput performance 
and data rates are increased but only at the cost of high hardware complexity and increased power-consumption. Spatial 
Modulation Matching Pursuit (SMMP) is the proposed enhanced CS technique used for the improvement of detection 
performance. Hence, this paper reviews recent research findings concerning normalized Compressive Sensing (CS) 
detection algorithm, used for Spatial Modulation (SM) in massive MIMO, to lowers the signal processing complexity, which 
in result improves the energy efficiency of system against that of conventional MIMO system.This strategy is achieved by 
involving additional structures and sparsity in which a single transmitter antenna or a subset of it is turned on at each case 
to transmit a certain data. The subset of antenna which is turned on for transmission depends on approaching data bits. 
Therefore, the total increase in the spectral efficiency of the system is given as base-two logarithm of whole antennas at the 
transmitter. It reduces the signal processing load at base station and doesn’t depend upon any synchronization between 
transmitters. The Spatial Modulation Matching Pursuit used prevents the Inter Channel Interference (ICI) of the system 
which in result improves the Bit Error Rate (BER) performance than the typical MIMO system.

1. Introduction
MIMO comprises of huge amount of antennas at both 
the transmitter and receiver side1-2. It delivers more 
data streams in less time, i.e. parallel data. It consists of 
3 features based on application areas − Spatial Diversity, 
Spatial Multiplexing and Beam forming. Spatial Diversity 
includes the transmission of number of copies of data 
streams at the transmitter side and the extraction of 
desired signal at the receiver side.  It improves the trans-
mission error and increases the system quality. Spatial 
Multiplexing includes the transmission of multiple, dif-
ferent data streams from the transmitter and reception 
from receiver after experiencing the same channel quality 
as like the single-input-single-output system. It provides 
the high data rates and increases the system capacity. 

Beam forming includes the transmission and reception of 
directional signal, in sensor arrays. It can be used in order 
to achieve spatial selectivity2. Particularly, the data rates 
in wireless communication are increased exponentially 
whereas the total energy consumption is also increased. 
This happens because of designing large number of 
antennas at base stations, transmission power and com-
plexity in their signal processing algorithms. There occurs 
the reduction in the energy efficiency. Therefore, to satisfy 
the need of efficiency of energy of future wireless com-
munication, technologies like massive MIMO and Spatial 
Modulation (SM) have been established. 

The goal of this paper is to give a review of significant 
findings related to compressive sensing detection for mas-
sive MIMO system.  Compressive Sensing detection can 
be defined as acquiring a signal from series of sampling 
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measurement, done with sampling theorem. According 
to this theorem, the sampling frequency must not be 
less than the twice of maximum frequency, . 
Massive MIMO technologies include compressive sens-
ing detection for spatial modulation in massive MIMO. 
It increases the Energy Efficiency (EE) by incorporating 
the multiple numbers of antennas at the base stations3-7. 
The typical linear detection and pre-coding techniques 
become best in large scale. Unlike conventional MIMO 
transmission, the additional structure is incorporated 
for this purpose in which a single transmitter antenna 
or a subset of them is activated for transmission instead 
of activating all antennas simultaneously. This strategy 
reduces the RF complexity and removes the inter-channel 
interference but also decreases the maximum achievable 
rates8-10. It requires no synchronization between transmit-
ters.

2. System Model
The model used in related findings is the Multiple Access 
Channel (MAC) of massive MIMO system. It consists of 
k number of mobile stations that have  transmit anten-
nas and an individual base station that have N receive 
antennas. M is the representation for the whole antennas 
at mobile station. It is given by . The system 
of multiple access is given by:

         (1)

Where  is the output data at base sta-

tion and  is the input data by mobile station. 

 is a matrix with as 

the m, nth complex coefficients. These represent the chan-

nel gain of frequency flat fading between nth transmitter 

and mth receiver.  denotes 

the Additive White Gaussian Noise (AWGN) vector with 

variance .  and  are the identity matrices with 

order and  respectively. Also,  repre-

sents the Kronecker product11. The average SNR of MAC

is given by 

          (2)

where denotes Hermitian transpose, refers to 

symbol energy, denotes expected value and
are the whole antennas that are turned on simultaneously 
amongst the mobile stations. 

3. Multiple Access Spatial 
Modulation
Because of limited number of active antennas used, gen-
eralized SM reduces the hardware complexity of multiple 
antennas devices and conveys extra information onto 
their spatial position. In SM, the given antennas  are 
activated according to the input sequence and the same 
constellation symbol is transmitted by the transmitter12. 
Without any loss, we supposed that number of antennas 
activated by users is same: . The transmit 
signal  can be expressed as:

= [0      (3)

Where represents the active antenna 

index and represents qth symbol of transmit constella-

tion . 
At the transmitter side, the antennas used per user are the 
power of 2 and is given by

where

where is the number of bits encoded on 
antenna indices12. It defines the cardinality of 𝒜 where it 
is the set of possible antenna groups. Unlike the typical 
technologies of MIMO system, SM reduces the interfer-
ence in the channel and the power consumed of mobile 
stations, but only at the loss of reduction in gained data 
rates. A conventional MIMO transmitter transmits

 bits whereas an individual SM 
transmits  bits in every channel use. 

4. Massive MIMO and Low 
Complexity Detection
Massive MIMO includes so many antennas at the base 
station that increases the complexity and power con-
sumption of the system. For ,one of the result 
states that the output signal after linear detection fulfills:
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      (4)
Where D is a matrix for the linear detection 

matrix of the three detectors; matched filter, zero forcing, 
minimum mean square error and it is given by13:

           (5)

           (6)

       (7)
Where 13, (  is the inverse matrix and (
is the pseudo-inverse operation. The importance to 

increase the large amount of antennas at the transmit-
ter side while using SM degrades the performance of 
MF, ZF and MMSE detectors. Therefore, a low-complex-
ity detector is proposed in recent research findings in 
which Compressive Sensing (CS) technology takes the 
advantage of large-scale MIMO benefits and reduces the 
detection complexity of hardware. i.e. necessar-
ily holds good for massive MIMO. 

5. CS Based Algorithms for SM 
Detection
The main problem of typical detectors is that even if 
only S columns are used for acquiring the information of 
amplitude and phase signal, but still the complete chan-
nel matrix H must be required for detection. The signal 
transmitted by SM contains  valuable entries 
which are equivalent to the simultaneously active antenna 
S and they are defined as S-sparse14. This improves the 
signal estimation from compressive techniques. The com-
pressive analysis  of a sparse signal  is given 
by15-17.

         (8)
Where  represents the sparse signal,

 represents the measurement error term 
and represents the measurement matrix. 
These recent research findings include the performance 
improvement of the typical MIMO detectors with the 
exploitation of similarity between (1) and (8). In com-
pressive sensing detection, RIP is the Restricted Isometry 
Property. It defines whether the recovery of signal is 
achieved or not for any channel = H15-16. For a chan-
nel matrix H of the MIMO channel, the RIP of order S is 
satisfied if, for any S-sparse signal , the relationships:

            (9)
hold for a constant to establish an estimate 

in the compressive sensing, the detection of the SM signals 
depends upon the sparsity of SM. For 17, (4) 
is solved in low-complexity manner and is expressed as:

       (10)
Where  

is a constant that restricts the power of noise with
. We can solve these optimization problems 

with some convex approaches, which are often highly 
complex, with high speed techniques. Therefore, they 
offer a trade-off between performance and complexity. 
Amongst the variety of CS greedy algorithms, the most 
efficient scheme named Compressive Sampling Matching 
Pursuit (CoSaMP) is selected to approximate the solu-
tion of (10)18. The CoSaMP is a low-complexity algorithm 
that recovers the indices of active antenna as well as the 
information of amplitude and phase information of the 
transmitted signals through a repetitive reconstruction 
process. It provides the guarantee for the error free detec-
tion of sparse signals. The results of this research show 
that the high amount of antennas for SM detection at 
the base station exploits the use of this algorithm by per-
forming an analysis of complexity as opposed to18. The 
following approach is considered to improve the detec-
tion performance.

6. CS Detection Technique
Spatial Modulation Matching Pursuit (SMMP) is the pro-
posed enhanced CS technique used for the improvement 
of detection performance. In typical CS algorithms, no any 
prior information regarding the sparse signal is assumed. 
Only, amount of non-zero entries is considered. When 
SMMP uses this algorithm, it generates the detection out-
put without any physical sense. Unlike the conventional 
SM modulation, the detected signal could have more than 
one active antenna per user. The noise and the inter-chan-
nel interference effects raised in the MAC are the causes 
for this unwanted condition. Therefore, in the transmitted 
signal, the extra prior information about the distribution 
of the non-zero entries is incorporated to reduce these 
effects and to further improves the performance19. The 
detection algorithm of SMMP explicitly indicates that it 
corresponds to a particularization to SM operation of the 
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structured CoSaMP iteration developed in20. Particularly, 
the errors are reduced in the active antennas’ identi-
fication by SMMP with the exploitation of the known 
distribution of the non-zero entries19-20.  The requirement 
of an epoch to determine the amount of antennas that are 
turned on is beneficial to meet the converging point of 
the algorithm. It improves the speed of algorithm. With 
the estimation of the largest components of the transmit-
ted signal, the algorithm identifies the antennas that are 
turned on. The residual signal employed by the 
algorithm is expressed as:

      (11)

Where  is the approximate transmitted sig-
nal at the ith iteration21-22. The decision matrix determines 
the apparently reasonable active antennas c  and 
can be expressed as

(12)
With the help of this decision matrix, a set of decision 

variables  is formed by the active antenna estimation 
process. An estimate of the apparently reasonable active 
antennas is provided by the set . The LS approxima-
tion reduces the system complexity and improves the 
performance with respect to the conventional linear 
alternatives that depend on its efficiency. This implement 
a ZF detector in which only previously included columns 
in the support are inverted. This exploits the benefits of 
large-scale MIMO detection and reduces the complexity. 
Several parameters can be modified to adjust the trade-off 
between complexity and performance and they are:

•	 Maximum epoch of SMMP: The whole iterations 

denoted by adjust the performance of 
system and concludes the complexity and detec-
tion accuracy of the algorithm. 

•	 Output entries of the matched filter: The output 
entries of the matched filter (MF) denoted by (k) 
determines the dimensions of the LS problem 
and affects the complexity and performance.

•	 Maximum epoch of the iterative LS: The maxi-
mum epoch of the iterative LS is denoted by

. While using iterative algorithms, 
every epoch improves the solution accuracy23. 
Therefore, a complexity and performance 
trade-off occurs. On the basis of need of com-
munication, it can be optimized at the BS.

In the proposed approach, the communication sys-
tems with N ≥M are also considered which are not taken 
in the conventional CS. SMMP reduces the typical detec-
tors’ complexity as well as provides improvement in 
performance.

7. Complexity Analysis of Least 
Squares Problem
The order of complexity performs the computational 
complexity analysis. It was applied in14,18 to evaluate the 
complexity of algorithm. Because of repetitive nature of 
the greedy CS algorithms, the order of complexity pro-
vides the inaccurate performance of the total operations. 
Therefore, a more precise approach is adopted in the recent 
research findings. On contrary to the results obtained 
in14,18 it is concluded in recent findings that the LS prob-
lem can control the whole complexity. Computational 
hardware complexity can influence the whole floating 
point operations (flops)18. Therefore, the requirement of 
LS algorithm efficient implementation is to decrease the 
complexity of the used method. Generally, two methods 
named direct and iterative procedures are used to solve 
the least square problem23.

•	 Direct Method: Direct Method includes the QR 
and the Cholesky decompositions. They depend 
upon creating the equations. These equations can 
be solved without any difficulty23. This method 
requires the storage intensive decompositions.

•	 Iterative Method: Based on the instantaneous 
residual, the LS problem is solved by improv-
ing starting solution in the repetitive method24. 
These accesses avoid the high storage decompo-
sitions.

The operations used QR, CG etc. analyse the com-
plexity24.  CS-based algorithm depends on the increment 
in the accuracy as the algorithm involved in24. In results, 
it improves the speed of convergence. The difference 
between direct LS method is that Cholesky decomposi-
tion is less complex than QR decomposition even though 
it is inaccurate. Therefore, due to the high complexity, 
the QR decomposition is not preferred in the LS prob-
lem. The improvement in the complexity of the iterative 
methods does not reduce the operations used as the total 
complexity and epoch are inversely proportional.
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8. Analysis of Energy Efficiency
As we know that the study of EE is very important to 
increase the battery life-time. Therefore, in the recent 
findings, the EE model is defined to characterise the EE 
improvements. The EE is expressed as the rate per mil-
liwatt of total consumed power by using the metric25,27-32

       (13)
Where  is the objective average Bit Error 

Rate (BER), is the spectral efficiency calculated in 
(bpcu) and  is the whole power consumption (mW). 
It is required to gain a given . The total power 
consumption per mobile station is given by:

(14)

Where denotes the whole power con-
sumption not including the power amplifier (PA) and it is 
classified into two factors:  and . represents the 
static power consumption and  represents the circuit 
power consumption. 

is the power consumption of  power 
amplifier. It depends on the parameter 𝜁 which is equiva-

lent to . It also depends upon the requisite signal power, 

transmitted by all antennas individually . The fac-
tor í is the peak-to-average power ratio (PAPR) which 
reduces the unwanted distortion in the signal of system 
and it depends on the modulation26. Ç represents the effi-
ciency of power amplifier27. The whole EE can be given 
by:

    (15)
Here, the efficiency factor is equivalent to 𝜂=0.35 and 

it is a class-A power amplifier27. Also the potential future 
research can be carried out in which the BER performance 
for this CS scheme can be characterized analytically in the 
large-scale.

9. Conclusion
This paper gives a review of related research findings 
related to the operation of CS based algorithm for SM 
and illustrates that how the compressive sensing detec-
tion techniques can reduce the system complexity and 

improves the system performance by incorporating the 
additional structure and sparsity of transmitted signals in 
the MAC. It represents an alternative of low-complexity 
to increase the EE in the MAC. It also defines the ways 
of maximizing the benefits of this scheme when high 
amount receive antennas at the BS are used due to its 
faster convergence and improved performance. The paper 
has highlighted possible future research directions within 
this field.
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