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Primitive Representations and the
Modular Group

Muhammad Nadeem Bari1∗, Muhammad Aslam Malik1

1 Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore,
54590, Pakistan

Abstract
Objectives: Primitive representations are useful to explore the modular group
action on real quadratic field.Methods/Statistical Analysis: By using primitive
representations structure of G-orbit are obtained. Finding: Conditions on n and

a, b, c are determinedwhenαG = (
−
α)

G
,αG = (−

−
α)

G
, αG = (−α)G, αG = (

−
α)

G
=

(−
−
α)

G
= (−α)G and αG ̸= (

−
α)

G
̸= (−

−
α)

G
̸= (−α)G, where α = a+

√
n

c with b = a2−n
c

is real quadratic irrational number. We also find some elements of modular
group PSL(2,Z) that moves α to

−
α , α to −

−
α and α to −α . Applications: By

using these conditions, we can construct the structure of the G-orbit. These
results are verified by suitable examples.
Keywords: Primitive Representations; coset diagram; modular group;
quadratic field

1 Introduction
Binary quadratic form is one of the subjects treated in elementary number theory.Another
subject treated in elementary number theory is the possibility of representing a posi-
tive integer as a sum of two squares and difference of two squares. The representations
n = x2+y2 and n = x2−y2 which are of our interest are special cases of general binary
quadratic form f (x, y) = ax2 +bxy+ cy2 and the representation n = x2 + y2 is primi-
tive representation if (x, y) = 1.

Let n= k2 m, where k ∈ N and m is a square free positive integer. Take Q∗ (
√

n) =
{ a+

√
n

c : a, b = a2−n
c ,c ∈ Z, c ̸= 0 and (a,b,c) = 1} and

Q∗
red (

√
n) =

(
α ∈ Q∗ (

√
n) : α > 1 and −1 <

−
α < 0

}
. Then

(Q(
√

m)\Q)= Uk∈NQ∗
(√

k2m
)
contain Q∗ (

√
n) and Q∗

red (
√

n) as G-subset and sub-
sets respectively.

If α = a+
√

n
c ∈ Q ∗ (

√
n), if α and α have different signs, then α is said to be an

ambiguous number. A quadratic irrational number α is said to be reduced if α > 1
and−1 < α < 0 . The modular group PSL(2, Z) is the group of all linear fractional
transformations z → sz+t

uz+v with sv− tu = 1 , where s, v, t, u are integers.
This group can be presented as G =

⟨
x,y : x2 = y3 = 1

⟩
, where x : z → −1

z ,y : z →
z−1

z
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Modular group can be written in the matrix form as it is the set of 2× 2 matrices with integral entries and determinant 1. It is

generated by two matrices X=
[

0 −1
1 0

]
, Y =

[
1 −1
1 0

]
of orders 2 and 3 respectively.

Now the product of two transformations is the same as the product of corresponding matrices. For the sake of simplicity, we
use matrices instead of transformations.

A coset diagram is a graph consisting of vertices and edges. It depicts a permutation representation of the modular group
G, the 3-cycles of y are denoted by three vertices of a triangle permuted anticlockwise by y and the two vertices which are
interchanged by x are joined by an edge.

In [1, 2], types of length 4, 6 satisfying exactly one of the conditions namely αG = (
−
α)

G
,αG = (−

−
α)

G
, αG = (−α)G,

αG = (
−
α)

G
= (−

−
α)

G
= (−α)G have been determined.

In [3, 4] formula for total numbers of ambiguous numbers inQ∗(
√

n) is determined. In [5] it is explored that if p ≡ 1(mod 4)

then
(⌊√

p
⌋
+
√

p
)G include circuit of length 2 and in which αG = (

−
α)

G
= (−

−
α)

G
= (−α)G. In [6] it is describe that if

p ≡ 3(mod 4) then
(⌊√

p
⌋
+
√

p
)G contains circuit of length 2 and in which αG = (−

−
α)

G
.

2 Materials and Methods

Lemma 2.1 [7] Let α= a+
√

n
c be an ambiguous number. Then x(α), y(α), y2 (α) are always ambiguous numbers.

Lemma 2.2 [8] If a natural number n can be written as sum of two squares of two rational numbers, then n can be written
as sum of two squares of two integers.

Lemma 2.3 [9] Any two elements of the same order are conjugate in a group G.
Lemma 2.4 [6] g

(−
α
)
= g(α) for all g ∈ G and α ∈ Q∗ (

√
n).

3 Results and Discussion

For α = a+
√

n
c ∈ Q∗(

√
n) , the elements α, α, −α and − α play an important role in the study of modular group action on

Q(
√

m) | Q =Uk∈NQ∗(
√

k2m) .

In this section we determine the elements of G and conditions on a, b, c when αG = (
−
α)

G
, αG = (−

−
α)

G
.

In the following theorem, we describe the elements of G that moves real quadratic irrational numbers to their conjugates.

Theorem 3.1: If α = a+
√

n
c ∈ Q∗ (

√
n) is such that αG = (

−
α)

G
, then the element g of G such that g(α)=

−
α is of the form g=

(g1)
−1 xg1 for some g1 ∈ G.

Proof: Let α = a+
√

n
c ∈ Q∗ (

√
n) be such that αG = (

−
α)

G
, then there exists an element g=

[
s t
u v

]
in G, which satisfy

sα+t
uα+v =

−
α .

That is sα + t = (uα + v)
−
α.

This implies that sα + t = uα
−
α + v

−
α .

This can be written as s
(

a+
√

n
c

)
+ t = u

(
a2−n

c2

)
+ s
(
−a+

√
n

−c

)
.

This gives as+ ct = bu+av, s = −v.

So, we have g =
[

s t
2as+ct

b −s

]
.

Then

g2 =

[
s t

2as+ct
b −s

] [
s t

2as+ct
b −s

]
=

[
s2 + 2ast+ct2

b 0
0 s2 + 2ast+ct2

b

]
=

[
1 0
0 1

]
= I

Since g is an element of order 2, but any two elements of same order are conjugate by lemma 2.3. So, g is of the form g =

(g1)
−1 xg1.
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Example 3.1: If α = −3+
√

29
−10 , then

−
α = 3+

√
29

10 . The elements which moves α to
−
α are y2xy and (xy)4x

(
y2x
)4 see Figure 1.

Fig 1.Orbit

But both elements can bewritten as y2xy= y−1xy and (xy)4x
(
y2x
)4=

((
y2x
))−4x

(
y2x
)4
.Both elements ofG are inCx= {g−1xg :

g ∈ G}.
Corollary 3.2: If α= a+

√
n

c ∈ Q∗ (
√

n) , then x(α) =
−
α if and only if b = −c.

Proof : As x
(

a+
√

n
c

)
= −a+

√
n

−c implies that −a+
√

n
b = −a+

√
n

−c . So, b =−c.

Conversely, if b =−c, then x
(

a+
√

n
c

)
= −a+

√
n

b = −a+
√

n
−c .

Corollary 3.3: If α= a+
√

n
c ∈ Q∗ (

√
n) , then x(α) =

−
α if and only if n has a primitive representation.

Proof: It has been proved in [5], that x(α) =
−
α if and only if n = a2 + c2. It remains only to show that this representation is

primitive.
Asα= a+

√
n

c ∈Q∗ (
√

n), then (a, b, c) = 1.Nowby Lemma 3.2, x(α) =
−
α if and only if b= −c.Thus (a, b, c) = (a,−c,c) =

(a,c) = 1. As required.
Remark 3.4 Corollary 3.3 holds only when n has primitive representation.
Example 3.5: Consider n = 22 + 62, then this representation is not primitive. By using corollary 3.3, we have α = 2+

√
40

6

corresponding this representation. Then x(α) = x
(

2+
√

40
6

)
= −2+

√
40

−6 =
−
α . But α = 2+

√
40

6 = 1+
√

10
3 ̸∈ Q ∗

(√
40
)

Corollary 3.6 : If α= a+
√

n
c ∈ Q∗ (

√
n) andx(α) =

−
α . Then x(−α) =−

−
α.

Proof : If x(α) =
−
α then by lemma 3.2 b = −c.

Now x(−α) = x
(

a+
√

n
−c

)
= −a+

√
n

a2−n
−c

= −a+
√

n
−b = −a+

√
n

c =− α .

Corollary 3.7 : If α= a+
√

n
c ∈ Q∗ (

√
n) andx(α) =

−
α . Then

(
c+

√
n

a

)
x = −c+

√
n

−a .

Proof : It has been proved in [5], that x(α) =
−
α if and only if n = a2 + c2.

Also n = c2 +a2 if and only if x
(

c+
√

n
a

)
= −c+

√
n

−a .

Corollary 3.8: If α=
√

n
c ∈ Q∗ (

√
n) , then x(α) ̸=

−
α .
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Proof : We prove this result by contradiction.
On contrary, we suppose that (α) =

−
α .

Then, x
(√

n
c

)
=

√
n

−c . This implies that
(√

n
c

)
=

√
n

−c .

That is,
(√

n
−n
c

)
=

√
n

−c .

Thus n = c2, a contradiction. So, (α) ̸=
−
α .

Example 3.9: If α=
√

2, then
−
α=

√
2

−1 and x
(√

2
)̸
=

√
2

−1 .

Corollary 3.10: If α= a+
√

n
c ∈ Q∗ (

√
n) and x(α) =

−
α , then ∃ γ ∈ αGsuch that x(γ) =

−
γ .

Proof : If x(α) =
−
α , then by theorem 3.1, the elements of G which moves α to

−
α are x and g−1xg see example 3.1. One

element is in anticlockwise direction, other element is in clockwise direction and g depends on the type of circuit of αG. Now
g−1xg (α) =

−
α this implies that xg (α) = g

(−
α
)
. By substituting g (α) = γ and using Lemma 2.4, we have x(γ) =

−
γ .

In the following theoremwe determine condition on ,b, cwhenαG = (−
−
α)

G
and this result is verified by a suitable example.

Theorem 3.2: If α= a+
√

n
c ∈ Q∗ (

√
n) is such that either −2a

b or −2a
c is integer, then αG = (−

−
α)

G
.

Proof : Case I. If −2a
c ∈ Z, we show αG = (−

−
α)

G
.

Consider (yx)
−2a

c (α)= α − 2a
c because (yx)l (α) = α + l.

This implies that, (yx)
−2a

c (α) = a+
√

n
c − 2a

c .

That is, (yx)
−2a

c (α)= −a+
√

n
c = −

−
α . So, αG = (−

−
α)

G
.

Case II. If −2a
b ∈ Z, we show αG =

(
−

−
α
)G

.

Consider (y2x)
−2a

b (α)= α
−2a(α)

b +1
because (y2x)l

(α)= α
lα+1 .

That is

(y2x)
−2a

b (α) =
a+

√
n

c
−2a

b

(
a+

√
n

c

)
+1

After simplification, we have

(y2x)
−2a

b (α) =
b(a+

√
n)

−2a2 −2a
√

n+bc

After rationalization, we have

(y2x)
−2a

b (α) =
b
(
−2a3 +abc+2an+bc

√
n
)

(−2a2 +bc)2 −4a2n

This can be written as

(y2x)
−2a

b (α) =
b
(
−2a

(
a2 −n

)
+abc+bc

√
n
)

4a4 +b2c2 −4a2bc−4a2n

After simplification, we have(
y2x
)−2a

b (α) =
b(−abc+bc

√
n)

b2c2 =
−a+

√
n

c
=−ᾱ . So, αG = (−ᾱ)G

Following corollary is an immediate consequence of the above result.

Corollary 3.11: If α= a+
√

n
c ∈ Q∗ (

√
n) is such that b or c divides−2a, then αG = (−

−
α)

G
.

Proof : As in such cases −2a
b or −2a

c becomes integer.

Example 3.12: In the orbit ( 2+
√

6
1 )

G
as shown in Figure 2 we have α= 2+

√
6

1 with a = 2, c = 1, b =−2.
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Fig 2.Orbit

Now

−2a
c

=
−2(2)

1
=−4. So,

(
2+

√
6

1

)G

=

(
−2+

√
6

1

)G

Similarly, for α= 1+
√

6
−5 with a = 1, c =−5, b = 1.

As

−2a
b

=
−2(1)

1
=−2, so

(
1+

√
6

−5

)G

=

(
−1+

√
6

−5

)G

In [1, 2] types of lengths 4, 6 have been determined in which all the four orbits αG, (−α)G, (
−
α)

G
and (−

−
α)

G
are distinct.

The following corollary follows from theorem 3.2 and corollary 3.2.

Corollary 3.13: If α= a+
√

n
c ∈ Q∗ (

√
n) is such that −2a

c is integer and b=−c, then αG = (
−
α)

G
= (−α)G = (−

−
α)

G
.

Example 3.14 : In the orbit
(

2+
√

5
1

)G
as shown in Figure 3, we have α= 2+

√
5

1 with a = 2, c = 1, b =−1.

Now −2a
c = −2(2)

1 =−4 and b =−c =−1. So,(
2+

√
5

1

)G

=

(
−2+

√
5

1

)G

=

(
2+

√
5

−1

)G

=

(
−2+

√
5

−1

)G
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Fig 3.Orbit

Corollary 3.15 : If α= a+
√

n
c ∈ Q∗ (

√
n) is such that −2a

c ∈ Z and b=−c, then the element of G which moves α to −α is of
the form x(yx)

−2a
c .

Proof: In theorem3.2, it is derived that if −2a
c ∈Z, then (yx)

−2a
c (α)= −a+

√
n

c . This implies that x(yx)
−2a

c (α)= x
(
−a+

√
n

c

)
=

a+
√

n
b = a+

√
n

−c . As required.
Corollary 3.16 : Ifα=

√
n

c ∈ Q∗ (
√

n) then the element g whichmovesα to−α is of the form g = (g1)
−1xg1 for some g1 ∈ G.

Proof: If α=
√

n
c ∈ Q∗ (

√
n) then in this case

−
α = −α , so by theorem 3.1 the element g which moves α to−α is of the form

g= (g1)
−1xg1 for some g1 ∈ G.

Corollary 3.17 : If α =
√

n
c ∈ Q∗ (

√
n) is such that

(√
n

c

)G
=
(√

n
−c

)G
, then αG = (

−
α)

G
= (−α)G = (−

−
α)

G
.

Proof: Here α =
√

n
c then −2a

c = 0 ∈ Z, so by theorem 3.2, we have αG = (−
−
α)

G
. Also

(√
n

c

)G
=
(√

n
−c

)G
, then αG =

(
−
α)

G
= (−α)G = (−

−
α)

G
.

Converse of above result is not hold because

(
1+

√
5

2
)

G

= (
−1+

√
5

2
)

G

= (
1+

√
5

−2
)

G

= (
−1+

√
5

−2
)

G

But the orbit does not contain these ambiguous numbers
√

5
1 ,

√
5

−1 ,
√

5
5 and

√
5

−5 .

Corollary 3.18: If the orbit αG is such that αG ̸= (
−
α)

G
̸= (−α)G ̸= (−

−
α)

G
, then all ambiguous numbers which lies on

G-circuit neither satisfy −2a
c ∈ Z nor b = −c .

Proof: By taking contrapositive to corollary 3.13, we get this result.
It has been proved in [5], that (α)x =

−
α if and only if n = a2 + c2. In the following theorem, we generalize this result. In

particular, we describe the condition on n when αG = (
−
α)

G
.

Theorem 3.3: If α = a+
√

n
c ∈ Q∗ (

√
n) is such that αG = (

−
α)

G
, then n can be written as the sum of two squares and this

representation is primitive.

Proof: Let a+
√

n
c ∈ Q∗ (

√
n) be such that αG = (

−
α)

G
, then there exists an element g=

[
s t
u v

]
in G, which satisfy sα+t

uα+v=
−
α .

That is sα + t = (uα + v)
−
α.

This implies that sα + t = uα
−
α + v

−
α .
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This can be written as

s
(

a+
√

n
c

)
+ t = u

(
a2 −n

c2

)
+ v
(
−a+

√
n

−c

)
This gives as+ ct = bu+av, s = −v.

Combining both equations, we have as+ ct = ub−as.
After simplification, we obtain−t = 2as−ub

c .
But sv− tu = 1.
By substitution, we have −s2 + (2as−ub)u

c = 1.
This can be written as−cs2 +2asu−bu2 = c.
After substituting, the value of b, we have

−cs2 +2asu−
(

a2 −n
c

)
u2 = c.

After simplification, we obtain

−cs2 +2asu− a2u2

c
+

nu2

c
= c.

This can be written as

n =
( c

u

)2
+
(
−a+

cs
u

)2
(1)

In this expression u ̸= 0, because if u = 0 then s =−v and sv− tu = 1 implies that s2 =−1 which is not possible.
By Lemma 2.2 if a natural number n can be written as sum of two squares of two rational numbers, then n can be written as

sum of squares of two integers. It is enough to prove this representation is primitive.
Let d = ( c

u ,−a+ cs
u ). Then d| c

u and d|(−a+ cs
u ).

This shows that ud|c and ud|(−au+ cs). That is ud|cs and ud|(−au+ cs).
This implies that ud|(−au+ cs− cs). So, d|a.
Also, d|c and d2|n From equation 1. Thus, d2|(a2 −bc), as d2|a2.
This implies that d2|bc, but d|c. So, d|b.
Thus d|(a, b, c) , but (a, b, c)= 1. So, d = 1.
Example 3.19 :
In the orbit

(
−1+

√
13

−6

)G
, the element of G which moves −1+

√
13

−6 to 1+
√

13
6 is y2 xy as shown in Figure 4 .

Fig 4.Orbit

https://www.indjst.org/ 2553

https://www.indjst.org/


Nadeem Bari and Malik / Indian Journal of Science and Technology 2020;13(25):2547–2557

Now corresponding element in matrix form is given by:

y2xy =
[

0 −1
1 −1

][
0 −1
1 0

][
1 −1
1 0

]
=

[
−1 1
−2 1

]
Here s =−1, t = 1, u = −2, v = 1 and a =−1, c =−6, b = 2.

Now n =
( c

u

)2
+
(
−a+ cs

u

)2
.

After substituting the values of s, t, u, v, a, b, c, we get

n =

(
−6
−2

)2

+

(
−(−1)+

(−6)(−1)
−2

)2

= 32 +22.

As required.
In the following theorem, we generalize the results of [5]. In particular, we describe the condition on n when αG = (−α)G.

Theorem 3.4: If α = a+
√

n
c ∈ Q∗ (

√
n) is such that αG = (−α)G, then n can be written as the sum of two squares and this

representation is primitive.

Proof : Letα= a+
√

n
c ∈ Q∗ (

√
n) be such that αG = (−α)G, then there exists an element g=

[
s t
u v

]
in G, which satisfy sα+t

uα+v=
−α .

That is sα + t =−(uα + v)α.
This implies that sα + t =−uα2 − vα .
This can be written as

s
(

a+
√

n
c

)
+ t =−u

(
a+

√
n

c

)2

− v
(

a+
√

n
c

)
.

Which gives as
c + t =

−u(a2+n)
c2 − va

c and cs = −2au− vc.
Combining both equations, we have

as
c
+ t =

−u
(
a2 +n

)
c2 −a

(
−s
c

− 2au
c2

)
After simplification, we obtain as

c + t = acs−un+a2u
c2 .

This implies that−t = −ub
c . But sv− tu = 1.

By substituting the value of v and t, we have s
(−2au

c − s
)
− u2b

c = 1.

After substituting the value of b, we obtain−s2 − 2aus
c − u2(a2−n)

c2 = 1.
After some simplification, we have u2n = c2s2 +2acus+u2a2 + c2.
This can be written as

n =
( c

u

)2
+

(
cs+au

u

)2
(2)

In this expression u ̸= 0, because if u = 0 then s =−v and sv− tu = 1 implies that s2 =−1 which is not possible.
By Lemma 2.2 if a natural number n can be written as sum of two squares of two rational numbers then n can be written as

sum of two squares of two integers. It is enough to prove this representation is primitive.
Let d = ( c

u ,a+
cs
u ). Then d| c

u and d|(a+ cs
u ).

This shows that ud|c and ud|(au+ cs). This can be written ud|cs and ud|(au+ cs).
This implies that ud|(au+ cs− cs). So, d|a.
Also, d|c and d2|n From equation 2. Thus d2|(a2 −bc), as d2|a2.
This implies that d2|bc, but d|c. So, d|b.
Thus d|(a, b, c) , but (a, b, c)= 1. So, d = 1.
Example 3.20:
In the orbit

(
3+

√
17

2

)G
, the element of G which moves 3+

√
17

2 to 3+
√

17
−2 is x

(
y2x
)3yxy2 x as shown in Figure 5.
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Fig 5.Orbit

Now corresponding element in matrix form is given by:

x
(
y2x
)3

yxy2x =
[

0 −1
1 0

][
1 0
3 1

][
1 1
0 1

][
1 0
1 1

]
=

[
−7 −4
2 1

]
Here s =−7, t =−4, u = 2, v = 1 and a = 3, c = 2, b =−4.

Now n =
( c

u

)2
+
(
a+ cs

u

)2
.

After substituting the values of s, t, u, v, a, b, c, we get

n =

(
2
2

)2

+

(
(3)+

(2)(−7)
2

)2

= 12 +42.

As required.

Theorem 3.5 If α = a+
√

n
c ∈ Q∗ (

√
n) is such that αG = (−

−
α)

G
, then n can be written as the difference of two squares of two

rational numbers.
Proof : Let a+

√
n

c ∈Q∗ (
√

n) be such that αG = (−
−
α)

G
, then there exists an element g=

[
s t
u v

]
in G , which satisfy sα+t

uα+v=

−
−
α .
That is sα + t =−(uα + v)

−
α.

This implies that sα + t =−uα
−
α − v

−
α .

This can be written as

s
(

a+
√

n
c

)
+ t =−u

(
a2 −n

c2

)
− v
(
−a+

√
n

−c

)
.

This gives as+ ct =−bu−av, s = v.
Combining both equations, we have 2as+ ct +ub = 0.
After simplification, we obtain−t = 2as+ub

c .
But sv− tu = 1. By substitution, we have s2 + (2as+ub)u

c = 1.
This can be written as cs2 +2asu+bu2 = c.
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After substituting, the value of b, we have

cs2 +2asu+
(

a2 −n
c

)
u2 = c.

After simplification, we obtain

cs2 +2asu+
a2u2

c
− nu2

c
= c.

This can be written as

n =
(

a+
cs
u

)2
−
( c

u

)2

If u = 0, then t ̸= 0. Otherwise g=
[

1 0
0 1

]
.

In the similar way, by eliminating s and u we can obtain n =
(
a+ bv

t

)2 −
( b

t

)2
. As required.

Example 3.21: In the orbit
(

2+
√

8
1

)G
, the element of G which moves 2+

√
8

1 to −2+
√

8
1 is y2 x as shown in Figure 6.

Fig 6.Orbit

Now corresponding element in matrix form is given by y2x=
[

1 0
1 1

]
.
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Here s = 1, t = 0, u = 1, v = 1 and a = 2, c = 1, b =−4.
Now n =

(
a+ cs

u

)2 −
( c

u

)2
.

After substituting the values of s, t, u, v, a, b, c in equation 3, we get

n =
(
(2)+ (1)(1)

1

)2
−
( 1

1

)2
= 32 −12. As required.

The element of G which moves 1+
√

8
1 to −1+

√
8

1 is yxy2 xyx as shown in Figure 6.
Now corresponding element in matrix form is given by

yxy2xyx =
[

1 1
0 1

][
1 0
1 1

][
1 1
0 1

]
=

[
2 3
1 2

]
Here s = 2, t = 3, u = 1, v = 2 and a = 1, c = 1, b =−7.

Now n =
(
a+ cs

u

)2 −
( c

u

)2
.

After substituting the values of s, t, u, v, a, b, c in equation 3, we get

n =

(
(1)+

(1)(2)
1

)2

−
(

1
1

)2

= 32 −12

As required.

4 Conclusion

The idea of study the elements that moves α to
−
α , α to−

−
α and α to−α given in this paper is new and original. We have deter-

mined the conditions on n and a, b, c when αG = (−
−
α)

G
, αG = (−α)G,αG = (

−
α)

G
, αG = (−

−
α)

G
=(−α)G=(

−
α)

G
andαG ̸=

(−
−
α)

G
̸= (−α)G ̸= (

−
α)

G
, where α ∈ Q∗ (

√
n) under the action of modular group G.These results are verified by some suitable

examples.

References
1. Aslam MA, Sajjad A. Reduced Quadratic Irrational Numbers and Types of G-circuits with Length Four by Modular Group. Indian Journal of Science and

Technology. 2018;11(30):1-7.
2. Sajjad A, Aslam MA. Classification of PSL(2, Z) Circuits Having Length Six. Indian Journal of Science and Technology. 2018;11(42):1-18.
3. Aslam M, Husnine S, Majeed A. Modular group action on certain quadratic fields. Punjab University Journal of Mathematics. 1995;28:47-68.
4. Husnine S, Aslam M, Majeed A. On ambiguous numbers of an invariant subset of under the action of the modular group PSL(2, Z). Studia Scientcrum

Mathematic Arum Hungarica. 2005;42(4):401-412.
5. AslamM,Husnine S,Majeed A.TheOrbits of Q^* (

√
p), p=2 or p≡1(mod 4) Under the action ofModular Group. Punjab University Journal ofMathematics.

2000;33:37-50.
6. Aslam M, Husnine S, Majeed A. The Orbits of Q^* (

√
p), p≡3(mod 4) Under the action of Modular Group. Punjab University Journal of Mathematics.

2003;36:1-14.
7. Mushtaq Q. Modular group acting on real quadratic fields. Bulletin of the Australian Mathematical Society. 1988;37(2):303-309.
8. Adler A, John EC.TheTheory of Numbers. London: Jones and Bartlett Publishers, Inc 1995.
9. Humphreys J. A Course in GroupTheory. Liverpool: Oxford University Press 1996.

https://www.indjst.org/ 2557

https://www.indjst.org/

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion

