
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 13.08.2020
Accepted: 21.10.2020
Published: 09.11.2020

Editor: Dr. Natarajan Gajendran

Citation: Arantza Jency A,
Sharma RK, Singh G (2020)
Stationary solutions, critical mass,
Tadpole orbits in the circular
restricted three-body problem with
the more massive primary as an
oblate spheroid. Indian Journal of
Science and Technology 13(39):
4168-4188. https://doi.org/
10.17485/IJST/v13i39.1396
∗
Corresponding author.

Tel: +91-9566406224
arantzajen1997@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2020 Arantza Jency et
al. This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Stationary solutions, critical mass, Tadpole
orbits in the circular restricted three-body
problem with the more massive primary
as an oblate spheroid

A Arantza Jency1∗, Ram Krishan Sharma1, Gagandeep Singh1

1 Department of Aerospace Engineering, Karunya Institute of Technology and Sciences,
Coimbatore, 641114, Tamil Nadu, India. Tel.: +91-9566406224

Abstract
Background: The location and stability of the equilibrium points are studied
for the Planar Circular Restricted Three-Body Problemwhere themoremassive
primary is an oblate spheroid.Methods: The mean motion of the equations of
motion is formulated from the secular perturbations as derived by (1) and used
in (2–4). The singularities of the equations of motion are found for locating the
equilibrium points. Their stability is analysed using the linearized variational
equations of motion at the equilibrium points. Findings: As the effect of
oblateness in the mean motion expression increases, the location and stability
of the equilibrium points are affected by the oblateness of the more massive
primary. It is interesting to note that all the three collinear pointsmove towards
the more massive primary with oblateness. It is a new result. Among the shifts
in the locations of the five equilibrium points, the y–location of the triangular
equilibrium points relocate the most. It is very interesting to note that the
eccentricities (e) of the orbits around L1 and L3 increase, while it decreases
around L2 with the addition of oblateness with the new mean motion. The
decrease in e is significant in Saturn-Mimas system from 0.95036 to 0.87558.
Similarly, the value of the critical mass ratio µc, which sets the limit for
the linear stability of the triangular points, further reduces significantly from
0.285 . . .A1 to 0.365 . . .A1 with the new mean motion. The mean motion sz in
the z-direction increases significantly with the new mean motion from 9A1/4
to 9A1/2.
Keywords: Circular Restricted Three-Body Problem (CRTBP); oblateness;
mean motion; equilibrium points; critical mass ratio; tadpole orbits

1 Introduction
The restricted three-body problem (RTBP) has played an essential role in many
different areas of dynamical astronomy and this will continue to do so. The modern
applications to space mechanics are more powerful if not more numerous than the
classical applications. The implications of the restricted problem for cosmology and
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stellar dynamics are also numerous. Consider the famous classical three-body problem, the Sun-Earth combination and the
determination of the motion ofMoon.Wemight think of the two large bodies, the Sun and the Earth, whichmove around their
centre of mass in approximate circles in their gravitational field and a third body, the Moon, moves on an approximate ellipse.
This configuration is stationary in a sense, since no collisions take place. This is also true for the motions of a Trojan asteroid
under the continued influence of Sun and Jupiter. On the other hand, one of the central problems in space science is to create
artificial bodies. As such the study of the restricted three-body problem remained of utmost interest for many mathematicians
and astronomers direct from Newton to Lagrange in the early days of its inception. In recent years, with the launching of
artificial satellites in the Earth-Moon system and in the solar system, the applications of the restricted three-body problem
to the celestial mechanics form the basis of some lunar and planetary theories. Euler was the first to contribute towards the
restricted three-body problem in 1772 in connection with the lunar theories. Beginning with Euler and Lagrange in 1772, the
theory of restricted three-body problem goes through Jacobi in 1836, Hill in1878, Brown in1896 and continue with Poincare
in 1892, Levi-Civita in1904 and Birkoff in1915 and many more modern mathematicians and astronomers.

RTBP possesses five points of libration called equilibrium or Lagrangian points. Three collinear equilibrium points L1, L2
and L3 lying on the line joining the two massive bodies are unstable in the Lyapunov sense, while two equilateral positions L4
and L5 are linearly stable for mass ratios µ < µ0 = 0.03852…The locations of the equilibrium points in the restricted three-body
problem by assuming both the primaries as oblate spheroids with their equatorial planes coincident with the plane of motion
was calculated in (5). In (6) the location of the collinear points in the same problem was studied numerically for some systems of
astronomical interest. These equilibria were shown to be unstable in general, though the existence of conditional infinitesimal
(linearized) periodic orbits around them was established. However, the secular effect of oblateness of the primaries on the
motion of the primaries was not included. The oblateness of only the more massive primary was considered and the secular
effect of oblateness (7) on the mean motion of the primaries was included in (8–12). In (8,9), the critical mass value µc was found
to decrease with oblateness. In (8,10), a numerical investigation of the locations of the five equilibrium points was made for
some systems of astronomical interest. Periodic solutions of the linearized equations of motion around the five equilibrium
points were studied. The angular frequency in the z-direction (sz) was found to be more than the mean motion n. In (11) it was
established that the oblateness induces a one-to-one commensurability at the exterior point L3 and at the interior point L2 for 0
≤ µ ≤ 1

2 and at L1 no such commensurability exists. Series expansions were found for the long-periodic (S4) short-periodic (S5)
orbits. s4 was found to increase and s5 was found to decrease with oblateness. A number of research publications were generated
in RTBP by various authors by considering the more massive or smaller primary or both primaries as oblate spheroids with
their equatorial planes coincident with the plane of motion. Some of the relevant publications are documented in (12–32).

In this paperwe have included the secular effects of oblateness on themean anomaly, argument of perigee and right ascension
of ascending node (1). We have obtained a new expression for mean motion of the primaries. We have utilized the new mean
motion to study the above problem. We have calculated the locations of the equilibrium points and studied the stability of the
equilibrium points using linearized equations of motion. Some interesting conclusions are drawn.

The collinear points and the y-coordinate of the triangular equilibrium points shift nearer to the origin due to the newmean
motion. But, the x-coordinate of the triangular points does not show a change due to the variation in themeanmotion till linear
terms of oblateness. As opposed to an increase in the eccentricity of the periodic orbits around the collinear points reported
when the previous mean motion was used, the eccentricity at the collinear point L2 decreases. The eccentricities of the orbits at
the other equilibrium points increased earlier with oblateness and it increases further with the new mean motion. As the mean
motion value increases, the critical mass value (µc) shows further decrease from the critical mass value (µ0) of the unperturbed
case. Both the angular frequencies of the triangular points increase until µ becomes 0.0266053866. The value of mean motion
at the triangular points in the z-direction shows further increase with the new mean motion.

The equations of motion, force function for the problem and the meanmotion expression are defined (sections 1 and 2).The
equilibrium points are located using the condition that the first derivative of the force function will equate to zero at these points
(Section 3). The stability of the collinear equilibrium points are studied (Section 4.1). The critical mass ratio for the stability of
the triangular equilibrium points is derived (Section 4.2). Also, the tadpole orbits around the triangular equilibrium points are
studied (Section 5).

2 Equations of Motion
Theproblem is defined in the non-dimensional synodic coordinate frame as given by [ Figure 1 ].Thebarycentre of the primaries
mark the origin of the systemwhich rotates about the z-axis (perpendicular to the plane of motion of primaries).Themass ratio
µ is the ratio of the mass of less massive primary m2 to the sum of the masses of the primaries m1 +m2 which is unity in the
non-dimensional system. Point P represents the point mass (with infinitesimal mass).
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The equations of motion in terms of the dimensionless synodic frame is given by Equations (1) (10,33). The force function
Ω (8,10) in the equations is given by Equation (2). The oblateness of the more massive primary A1= (RE

2-RP
2)/5R2, RE and RP

are equatorial and polar radii, respectively, and R is the distance between the primaries, affects the force function (2) of the
system.

x
′′ −2ny

′
= Ωx,

y
′′
+2nx

′
= Ωy,

(1)

Ω =
n2

2

(
(1−µ)r2

1 +µr2
2

)
+

[
1−µ

r1
+

µ
r2

+
(1−µ)A1

2r3
1

]
. (2)

Ωx =
∂Ω
∂x

= n2x− (1−µ)(x−µ)
r3

1
− µ (x+1−µ)

r3
2

− 3A1 (x−µ)(1−µ)
2r5

1
,

Ωy =
∂Ω
∂y

= y
[

n2 − (1−µ)
r3

1
− µ

r3
2
− 3A1

2r5
1

]
.

(3)

Referring [ Figure 1 ], the distances r1 and r2 of P from the more massive and the smaller primaries are related to the distances
x and y from the origin by

r2
1 = (x−µ)2 + y2,

r2
2 = (x+1−µ)2 + y2.

(3)

Fig 1. Planar RestrictedThree Body Problem in the fixed (sidereal) and rotating (synodic) coordinate system.

2.1 Mean Motion

The mean motion equation (Equation 5) for this study is derived using the effect of perturbation J2, given by Equations
(4) (34),on the three orbital elements – Ms - mean anomaly, ωs - argument of perigee and Ωs - right ascension of the ascending
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node.

dMs

dt
= n

1+
3J2

2a2 (1− e2)

3
2

 , dωs

dt
= n

[
3J2

a2 (1− e2)2

]
,

dΩs

dt
= n

[
−3J2

2a2 (1− e2)2

]
, (4)

J2 is Earth second zonal harmonic; a and e are semi-major axis and eccentricity, respectively.
Themeanmotion n is the summation of the changes in Ms, ωs and Ωs after one revolution (1). Averaging the above equations

for one revolution and summing them up, the mean motion expression after simplification is obtained, as in (1), given by

n = 1+
3A1R2

2a2 [(1− e2)Re]2

(
1+
√

1− e2
)
.

When the value of eccentricity e becomes zero and we get n = 1+ 3A1R2

a2Re2 , which upon non-dimensionalizing gives Equation
(5) (1,3).

n = 1+3A1. (5)

3 Location of Equilibrium Points

The equations of motion (1) are found to have singular solutions at the five points (33) called the Lagrange points, liberation
points or equilibrium points. Three of these equilibrium points (collinear equilibrium points - L1, L2 and L3) lie on the line
joining the primaries and the other two (triangular equilibrium points - L4 and L5) form nearly equilateral triangles (10) with
the primaries. At these equilibrium points the first derivatives of the force function are zero i.e., Ωx = Ωy = 0 (10,33).

3.1 Location of Collinear Equilibrium Points

As the collinear equilibriumpoints lie on the x-axis, in addition to the conditionsΩx =Ωy = 0, they also satisfy y= 0.Therefore,
by equating Ωx and y to zero and making the corresponding substitutions from Equations (6), we get the seventh degree
polynomials given by Equations (7), (8) and (9) for the locations of L1, L2 and L3, respectively, which upon solving with the
help of MATLAB for different values of µ and A1 gives the locations of the collinear equilibrium points.

x1 = µ −1−ρ1,

x2 = µ −1+ρ2,

x3 = µ +ρ3,

y1 = y2 = y3 = 0.

(6)

(2+12A1)ρ7
1 +[(2+12A1)(5−µ)]ρ6

1 +[(2+12A1)(10−4µ)]ρ5
1

+[(2+12A1)(10−6µ)−2]ρ4
1 +[(2+12A1)(5−4µ)−4(1−µ)]ρ3

1
+[9A1(1−µ)−12µ ]ρ2

1 −8µρ1 −2µ = 0 ,
(7)

(2+12A1)ρ7
2 − [(2+12A1)(5−µ)]ρ6

2 +[(2+12A1)(10−4µ)]ρ5
2

+[(2+12A1)(10−6µ)− (2−4µ)]ρ2
4 +[(2+12A1)(5−4µ)−4+12µ ]ρ3

2
+[9A1(1−µ)−12µ ]ρ2

2 +8µρ2 −2µ = 0 ,
(8)

(2+12A1)ρ7
3 +[(2+12A1)(2+µ)]ρ3

6 +[(2+12A1)(1+2µ)]ρ5
3

+[(2+12A1)µ −2]ρ3
4 −4(1−µ)ρ3

3 − [(2+3A1)(1−µ)]ρ2
3

−6(1−µ)A1ρ3 −3(1−µ)A1 = 0 .
(9)
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The location and stability of the equilibrium points are analysed for the different planetary systems given in [ Table 1 ]. The
locations of the three collinear equilibrium points for these systems with and without the oblateness coefficient A1 and their
corresponding shifts in kilometres are listed in Tables 2, 3 and 4 , respectively. The shifts in the position of the collinear
equilibrium points are in a range of an order of 101 to 103 kilometres in the dimensional frame. It is interesting to note that
all the three collinear points move towards the more massive primary with oblateness with the new mean motion taken in this
study. Earlier in (10), with the mean motion n2 = 1 + 3A1/2 being utilized so far in the literature, it was noticed that only L1
moves towards the barycentre.The present observation is very interesting with the newmeanmotion as the direction of shift of
L2 and L3 has changed and symmetry is obtained in the shift of the collinear points. Maximum shift in Saturn – Tethys system
of 226.3 km is observed. Maximum shift in Saturn – Mimas of 721.1 km is found. Maximum shift of 1151.8 km is found in L3
for Saturn-Mimas system, whose oblateness coefficient (A1) is maximum (0.004235) of the 11 systems chosen for the study.

Table 1. Planetary systems and their parameters
S. No. System µ A1 R (km)
1 Jupiter – Io 0.0000415283 0.0006701421 421800
2 Jupiter – Europa 0.0000250794 0.0002646382 671100
3 Jupiter – Ganymede 0.0000807835 0.0001040401 1070400
4 Jupiter – Callisto 0.0000479677 0.0000337017 1882700
5 Saturn – Mimas 0.0000000659 0.0042349996 185539
6 Saturn – Enceladus 0.0000001480 0.0025865767 238037
7 Saturn – Tethys 0.0000010950 0.0016835857 294672
8 Saturn – Dione 0.0000020390 0.0010308526 377415
9 Saturn – Rhea 0.0000032000 0.0005275432 527068
10 Saturn – Titan 0.0002461294 0.0000981153 1221865
11 Saturn – Hyperion 0.0000002000 0.0000667989 1500934

Table 2. Locations of L1

S. No.
xL1

with A1 = 0 with A1 ̸= 0 Shift (km)
1 -1.0241601645 -1.0237986154 152.50141
2 -1.0204068383 -1.0202647840 95.33237
3 -1.0301894364 -1.0301312540 62.27845
4 -1.0253548320 -1.0253362861 34.91631
5 -1.0028031696 -1.0016537342 213.26510
6 -1.0036719149 -1.0027279336 224.70248
7 -1.0071624574 -1.0063945723 226.27425
8 -1.0088158731 -1.0083140311 189.40271
9 -1.0102489352 -1.0099818079 140.79427
10 -1.0438287827 -1.0436846088 176.16102
11 -1.0040600743 -1.0040264186 50.51495
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Table 3. Location of L2

S. No.
xL2

with A1 = 0 with A1 ̸= 0 Shift (km)
1 -0.9761410952 -0.9758344587 129.33928
2 -0.9798175902 -0.9796952645 82.09280
3 -0.9702478526 -0.9702019533 49.13061
4 -0.9749723121 -0.9749571393 28.56585
5 -0.9972019276 -0.9933151479 721.14922
6 -0.9963367564 -0.9945473470 425.94563
7 -0.9928694013 -0.9919540167 269.73821
8 -0.9912315837 -0.9907059755 198.37243
9 -0.9898142613 -0.9895550788 136.60678
10 -0.9569373834 -0.9568352642 124.77587
11 -0.9959504866 -0.9959173637 49.71529

Table 4. Location of L3

S. No.
xL3

with A1 = 0 with A1 ̸= 0 Shift (km)
1 1.0000173034 0.9990158024 422.43312
2 1.0000104497 0.9996140741 266.00763
3 1.0000336598 0.9998776948 166.94488
4 1.0000199865 0.9999694445 95.15541
5 1.0000000275 0.9937923687 1151.76281
6 1.0000000617 0.9961746748 910.58362
7 1.0000004562 0.9974982645 737.32583
8 1.0000008496 0.9984632933 580.29681
9 1.0000013333 0.9992123096 415.86916
10 1.0001025539 0.9997339019 450.44300
11 1.0000000833 0.9998999218 150.33581

3.2 Location of Triangular Equilibrium Points
Solving the equations Ωx = 0 and Ωy = 0, the values of r1 and r2 are related to the mean motion values by the following
equations.

2r5
1n2 −2r2

1 −3A1 = 0,

r2 = η
−

2
3 .

(10)

Substituting themeanmotion value n and solving Equations (10) by series expansionmethod, we get the values of r1 and r2.The
Equations (11) are obtained by truncating the higher-order terms (of orders 2 and above) of oblateness coefficient A1. While the
value of r1 remains undisturbed by the oblateness of the more-massive primary in the CRTBP in the literature (10,14), withthe
new mean motion, both the values of r1 and r2 are affected byA1. Also, the effect of A1 increases in the case of r2.

r1 = 1− 3
2

A1,

r2 = 1−2A1.

(11)

Substituting these values in Equations (3) and solving for x and y, the triangular equilibrium points are located by Equations
(12). These points form near-equilateral triangles (8,10) with the primaries. Equations (12) suggest that the varied mean motion
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does not affect the x-location of the triangular equilibrium points (14) till linear terms of A1, but it affects the y-location of L4,5.
However, the effect of new mean motion is noticed in the x-coordinate of the triangular points when higher order terms are
taken into account. Also, when the necessary changes are made from elliptic RTBP to the CRTBP, the equations show excellent
agreement with (3). Also, (3) shows that the effect of A1 on the location of the triangular equilibrium points is reduced by the
orbital eccentricity of the primaries.

x = µ − 1
2
− A1

2
,

y =±
√

3
2

(
1− 7

3
A1

)
.

(12)

The locations of the triangular equilibrium points for the systems in [ Table 1] and their shifts due to the oblateness effect are
given in [ Table 5 ]. [ Table 5 ] shows that the triangular equilibriumpoints are shifted away from the barycentre in the x-direction
and that theymove towards the barycentre in the y-direction. Among the shifts in the location of the equilibriumpoints, the shift
in the y-direction of the triangular points are the maximum. They range above 200 kilometres in the dimensional coordinates
for all the cases taken in [ Table 1]. Maximum shifts of 392.9 km and 1587.8 km in the x and y co-ordinates, respectively, are
noticed in the Saturn-Mimas system, whose oblateness coefficient A1 is maximum of the 11 systems chosen for this study.

Table 5. Locations of the triangular equilibrium points

S. No.
xL4,L5 yL4,L5

A1 = 0 A1 ̸= 0 Shift (km) A1 = 0 A1 ̸= 0 Shift (km)
1 -0.4999584717 -0.5002935428 141.33297

±0.8660254038

±0.8646712303 571.19039
2 -0.4999749206 -0.5001072397 88.79935 ±0.8654906425 358.87829
3 -0.4999192165 -0.4999712366 55.68226 ±0.8658151673 225.03718
4 -0.4999520323 -0.4999688832 31.72509 ±0.8659573019 128.21545
5 -0.4999999341 -0.5021174339 392.87879 ±0.8574676302 1587.80075
6 -0.4999998520 -0.5012931404 307.85048 ±0.8607986411 1244.16289
7 -0.4999989050 -0.5008406979 248.05278 ±0.8626233385 1002.49339
8 -0.4999979610 -0.5005133873 194.52962 ±0.8639423332 786.18209
9 -0.4999968000 -0.5002605716 139.02557 ±0.8649593836 561.86515
10 -0.4997538706 -0.4998029283 59.94183 ±0.8658271397 242.25200
11 -0.4999998000 -0.5000331995 50.13037 ±0.8658904215 202.59948

4 Stability of Equilibrium Points
Representing the location of equilibrium points by Li(a,b), the motion near the equilibrium points can be approximated using
the equations x = a+ξ and y = b+η (8,10). Thevariational equations of motion for (ξ ,η) in the linear analysis from Equations
(1) are obtained as

ξ ′′ −2nη ′
= Ωxx (a,b)ξ +Ωxy (a,b)η ,

η ′′
+2nξ ′

= Ωxy (a,b)ξ +Ωyy (a,b)η .
(13)

Its characteristic equation and general solution are given by Equations (14) and (16), respectively (8,10).These equations are used
to study the linear stability of the equilibrium points. The points are said to be stable if any disturbance is nullified over time
without causing a permanent change in the location of the points (18).

λ 4 +(σ1)λ 2 +(σ2) = 0,

Λ2 +(σ1)Λ+(σ2) = 0,
(14)

σ1 =
(
4n2 −Ωxx −Ωyy

)
σ2 =

(
ΩxxΩyy −Ω2

xy
)
,

(15)
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ξ = ∑4
i=1 αieλit ,

η = ∑4
i=1 βieλit .

(16)

4.1 Stability of Collinear Equilibrium Points

At the collinear points, we have

Ωxx = n2 +
2(1−µ)

r3
1

+
2µ
r3

2
+

6(1−µ)A1

r5
1

> 0 ,

Ωxy = 0 ,

Ωyy = n2 − (1−µ)
r3

1
− µ

r3
2
− 3A1 (1−µ)

2r5
1

.

(17)

It can be seen that Ωxx > 0, Ωxy = 0, Ωyy < 0. This results in σ2 < 0. The roots of Equations (13) are

λ1,2 =±ν1 =±

√√√√−σ1 +
√

σ2
1 −4σ2

2
,

λ3,4 =±iν2 =±

√√√√−σ1 −
√

σ2
1 −4σ2

2
.

(17)

where, the first two roots are real and the other two are imaginary.This proves that the collinear points are unstable (10,13,15). But,
if the initial conditions (ξ0,η0) of Equations (16) are chosen such that the values of α1,α2 are zero, we can generate periodic
elliptic orbits around the collinear equilibrium points (10).These elliptic orbits are centred around the collinear points with their
semi-major and semi-minor axes parallel to the y- and x-axes, respectively. The orbit’s eccentricity eo and semi-major axis ao
are given by Equations (18) (1,10).

eo =

√
1− 1

σ2
3
, ao =

√
σ2

3 a2 + b̂2. (18)

where

σ3 =
ν2

2 +Ωxx

2ν2
. (19)

[ Table 6 ] lists the eccentricity of the periodic orbits around L1, L2 and L3 for the systems in [ Table 1].The eccentricities of the
system are affected by the oblateness of the more massive primary. Eccentricities of the orbits around L1 and L3 increase with
the addition of oblateness (10), whereas the eccentricities of the orbits around L2 decrease due to the change in the meanmotion
instead of an increase observed in (10). There is significant decrease in eccentricity for the orbit around L2 in Saturn-Mimas
system from 0.95036 to 0.87558.This is again proved by the plots Figures 2, 3 and 4 . To show the effect of A1 on the eccentricity
eo, the orbits around L1, L2 and L3 in the non-dimensional frame for the Saturn-Mimas system (with highest A1 value) in [
Table 1] are plotted in Figures 2, 3 and 4 respectively, with an unchanged semi-major axis value.
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Table 6. Eccentricities of the periodic orbits near the collinear Lagrangian points

S.No.

Eccentricity
L1 L2 L3

A1 = 0 A1 ̸= 0 A1 = 0 A1 ̸= 0 A1 = 0 A1 ̸= 0
1 0.9485726180 0.949983158 0.9517748579 0.9504026696 0.8660254044 0.866315809
2 0.9488207988 0.949483051 0.9515277322 0.9508874119 0.8660254040 0.866140029
3 0.9481740739 0.948353168 0.9521709192 0.9520031906 0.8660254059 0.866070457
4 0.9484936280 0.948562395 0.9518534081 0.9517884343 0.8660254045 0.866039997
5 0.9499881584 0.985790165 0.9503617692 0.8755885755 0.8660254038 0.867869261
6 0.9499303335 0.974203452 0.9504195923 0.9073909887 0.8660254038 0.867149122
7 0.9496983011 0.960152007 0.9506516499 0.9377346474 0.8660254038 0.866755971
8 0.9495885513 0.955148141 0.9507614127 0.9446457582 0.8660254038 0.866472355
9 0.9494935059 0.952034416 0.9508564709 0.9482440412 0.8660254038 0.866253987
10 0.9472712881 0.947602961 0.9530631126 0.9528248103 0.8660254238 0.866068146
11 0.9499045071 0.950725478 0.9504454252 0.9496186425 0.8660254038 0.866054331

Fig 2. Periodic orbits around the collinear equilibrium point L1
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Fig 3. Periodic orbits around the collinear equilibrium point L2

Fig 4. Periodic orbits around collinear equilibrium point L3
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4.2 Stability of Triangular Equilibrium Points

4.2.1 Critical mass ratio
At the triangular points L4 and L5, we have

Ωxx = (x−µ) f +(x+1−µ)g > 0,
Ωxy =±y[ f (x−µ)+g(x+1−µ)],
Ωyy = y2( f +g)> 0,

where

f = 3(1−µ)/r5
1 +15A1/2r7

1 > 0,g = 3µ/r5
2 > 0.

Substituting the values of r1 and r2 in the above equations from (11) at L4, we get

Ωxx =
3
4
+9A1 −3µA1,

Ωyy =
9
4
+12A1,

Ωxy =

√
3

2

(
3µ − 3

2
+23µA1 −13A1

)
.

(20)

The roots of the characteristic Equations (14) are

Λ1,2 =

√√√√−σ1 ±
√

σ2
1 −4σ2

2
.

(21)

where, D = σ2
1 − 4σ2. As given by (33), for the triangular equilibrium points to be stable, the discriminant D of Equation (14)

should be zero. Therefore, σ2
1 −4σ2 = 0. Applying this condition results in Equation (22) which enables in finding a limiting

value for the mass ratio, called the critical mass ratio µc, within which the system will be linearly stable.

1−6A1 +(−27−84A1)µc +(27+90A1)µ2
c = 0. (22)

Solving Equation (22) and truncating the higher order terms of A1, the critical mass ratio is

µc =
1
2

(
1−

√
69
9

)
− 1

9

(
1+

19√
69

)
A1, (23)

µc = µ0 −0.3652590232 A1. (24)

With n2 = 1 + 3 A1/2, we have from (8),

µc =
1
2

(
1−

√
69
9

)
− 1

9

(
1+

13√
69

)
A1, (25)

µc = µ0 −0.28500179A1. (26)

Here µ0 is the critical mass ratio for the unperturbed CRTBP which is equal to 0.038520896505 (33). From equations (24) and
(26) we prove that the critical mass ratio µc further decreases with the new mean motion value. It is inferred from (4) that the
value of µc increases with the oblateness of the smaller primary. It may be pointed out that the critical mass ratio µc in Equations
(23) and (24) agrees as a particular case with that of (3), after making appropriate changes to convert the ERTBP to CRTBP.

From Equations (23) to (26), it can be seen that with the coefficient of A1 increase in the new mean motion expression, the
critical mass ratio µcfurther decreases (8,14), where the meanmotion value is n2 = 1+3 A1

2 . [ Table 7 ] lists the critical mass ratio
values for different oblateness coefficients from (8) and with Equation (23), which clearly depicts further reduction in the critical
mass ratio µc with the current mean motion.
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Table 7. Variation of critical mass ratio withA1

A1 µc
(8) µc

0.100000 0.010020717725 0.001994994186
0.050000 0.024270807115 0.020257945345
0.010000 0.035670878627 0.034868306273
0.005000 0.037095887866 0.036694601389
0.001000 0.038235894717 0.038155637481
0.000500 0.038378395611 0.038338266993
0.000100 0.038492396326 0.038484370602
0.000050 0.038506646415 0.038502633553
0.000010 0.038518046487 0.038517243914
0.000005 0.038519471496 0.038519070209
0.000001 0.038520611503 0.038520531246

4.2.2 Long- and short- periodic terms when the discriminant is greater than zero
When 0 < µ ≤ µc, the discriminant D of Equation (21) is greater than zero. This gives a linearly stable solution of the
characteristic equation for the triangular points with long- and short-periodic terms (10,11) given by Equations (27).

λ1,2 =±i(−Λ1)

1
2
=±is4,

λ3,4 =±i(−Λ2)

1
2
=±is5.

(27)

The series expansions restricting to A1 terms of s4 and s5 with the oblateness of the more massive primary are:

s4 =
3
√

3
√µ

2
[1+

23
8

µ +
4439
128

µ2 +
548711
1024

µ3 +O
(
µ4)

+A1

(
37
6

+
2291
48

µ +
680627

768
µ2 +

114994403
6144

µ3 +O
(
µ4))]

s5 = 1− 27
8

µ−3213
128

µ2 − 355023
1024

µ3 +O
(
µ4)

−A1

(
−3

2
+

561
16

µ +
133767

256
µ2 +

21453741
2048

µ3 +O
(
µ4)) (28)

From Equations (28), it is obvious that the long-period frequency (s4) increases with oblateness and a further increase is
observed when comparing the series expansion of s4 with that of (11). Similarly, truncating the higher order terms, the short-
period frequency(s5) decreases with A1 when µ > 0.0266053866. The variation of s4 and s5 with A1 are tabulated in [ Table 8].

Table 8. Angular Frequencies - L4,5

S. No. s4 s5 szA1 = 0 A1 ̸= 0 A1 = 0 A1 ̸= 0
1 0.0167446409 0.0168435533 0.9998597987 1.0008630298 1.0030110645
2 0.0130119318 0.0130391763 0.9999153412 1.0003119086 1.0011901537
3 0.0233568446 0.0233723479 0.9997271917 0.9998829326 1.0004680583
4 0.0179964257 0.0180002369 0.9998380512 0.9998885445 1.0001516437
5 0.0006669521 0.0063495951 0.9999997776 1.0063124178 1.0188792841
6 0.0009995003 0.0039960385 0.9999995005 1.0038644146 1.0115726317
7 0.0027186939 0.0037268803 0.9999963043 1.0025152732 1.0075476494
8 0.0037099072 0.0040399936 0.9999931183 1.0015369402 1.0046281238

Continued on next page
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Table 8 continued
9 0.0046476228 0.0047292641 0.9999891997 1.0007798303 1.0023711307
10 0.0407888777 0.0408138380 0.9991677874 0.9993140892 1.0004413852
11 0.0011618957 0.0011666839 0.9999993250 1.0000995128 1.0003005499

This solution results in a retrograde periodic elliptic motion (12) which is inclined at an angle α , a function of the second
derivatives. From (12), the relation between α and the second derivatives is given by

α =
1
2

tan−1
[

2Ωxy

Ωxx −Ωyy

]
, (29)

When the mean motion is n2 = 1+ 3
2 A1,

tan2α =
√

3−2
√

3µ +A1

(
8√
3
− 16√

3
µ +4

√
3µ2

)
. (30)

When the mean motion is n2 = 1+6A1 (the current study),

tan2α =
√

3−2
√

3µ +A1

(
20√

3
− 40√

3
µ +4

√
3µ2

)
. (31)

It is clearly seen from Equations (30) and (31) that the angle α increases with A1 and that this increase is further enhanced with
the inclusion of the new mean motion expression.

4.2.3 Secular solutions when the discriminant is equal to zero
When the discriminant is negative, the roots of Equations (14) will give a complex value with non-zero real and imaginary parts
resulting in an unstable solution. But, we get purely imaginary roots [Equations (32)] when the discriminant D = 0.

λ1,3 = ik
1
2
, λ2,4 =−ik

1
2
, (32)

k =
σ1

2
> 0. (33)

However, elliptic retrograde orbits can be established if the initial coordinates are combined with special velocity components.
Transforming the coordinates at the triangular points about an angle α given by (29):

ξ =
−
ξ cosα −

−
ηsinα ,

η =
−
ξ sinα +

−
ηcosα.

(34)

Substituting the above equation in Equations (13), we get

−
ξ

′′

−2n
−
η

′

=
−

λ ∗
2

−
ξ ,

η ′′
+2n

−
ξ

′

=
−

λ ∗
1
−
η ,

(35)

where
−

λ ∗
1,2 =

(
2n2 − k

)
±2n

√
n2 − k. (36)
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Solving Equations (34), using Laplace transformation, the solutions can be written (12) in terms of the initial position and

velocities (
−
ξ0,

−
η0,

−
ξ0

′

,
−
η0

′
) as

ξ =

ξ 0 +


(

k+λ ∗
1

)
ξ

′

0

2k
− nλ ∗

1η0

k

 t

cos
√

kt

+




nλ ∗

1 η0

k
3
2 −

(
λ ∗

1 − k
)

ξ
′

0

2k
3
2


+



(
k+λ ∗

2

)
ξ0

2k
1
2 +

nη0
′

k
1
2


t


sin

√
kt ,

η =

η0 +


(

k+λ ∗
2

)
η0

′

2k
−

nλ ∗
2 ξ0

k

 t

cos
√

kt

+





(
k−λ ∗

2

)
η0

′

2k
3
2 −

nλ ∗
2

k
3
2


ξ 0 +



(
k+λ ∗

1

)
η0

2k
1
2 − nξ

′

0

k
1
2


t


sin

√
kt .

(37)

It is clear that, in this case also, due to the secular terms in t, the solution is unstable (12). However, retrograde elliptic periodic
orbits can be shown when the initial conditions are combined with special velocity components as

−
ξ0

′

=

√
k
−
η0

m
,

−
η0

′

=−
√

km
−
ξ0.

(38)

where

m =

√√√√√√√
(

k+
−

λ ∗
2

)
(

k+
−

λ ∗
1

) . (39)

Eliminating the secular terms from Equations (37), we get

−
ξ =

−
ξ0cos

√
kt +

−
η0

m
sin

√
kt,

−
η =

−
η0cos

√
kt −m

−
ξ0sin

√
kt.

(40)

Further eliminating t from the above equations, we have

m2
−
ξ

2

+
−
η

2
= m2

−
ξ0

2

+
−
η0

2
. (41)

Equations (41) represents an ellipse with eccentricity e =
√

1−m2, which after some algebra is equal to

e =
√

2(
√

2−1)

1−
3
(

2−
√

2
)

4
A1 (µ −1)

 . (42)
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It can be seen that the eccentricity exactly matches with the result of (12) till the first power of A1. However, we have noticed that

when the higher order terms of A1 are included, the eccentricity shows a further increase. At
(−

ξ0,0
)
, the velocity components

from Equations (38) become

−
ξ0

′

= 0,
−
η0

′

=−
√

km
−
ξ0.

(43)

As
√

km is always positive,
−
η0

′

always gets a sign opposite to that of
−
ξ0. This shows that the periodic orbits represented by

Equations (40) are retrograde.

5 Tadpole Orbits around Triangular Equilibrium points
For small distances from the triangular equilibrium points, trajectories in the synodic frame can be obtained by integrating the
variational equations of motion.This way, we obtain particle paths, a combination of the short- and long-periodic orbits called
the Tadpole orbits (35) starting very close to the triangular points. These tadpole orbits define the movement of Trojan bodies
around L4 and L5 points of the Sun-Jupiter system (35). The Trojan orbits can be approximated by using the Tadpole orbits with
suitable perturbations in the RestrictedThree–Body Problem (36).

With the help of the second derivatives of the force function (Ωxx,Ωxy,Ωyy) at the triangular equilibrium points, the roots
of Equations (14) are expressed as

λ1,2 =±iν1 =±

√√√√−σ1 +
√

σ2
1 −4σ2

2
,

λ3,4 =±iν2 =±

√√√√−σ1 −
√

σ2
1 −4σ2

2
.

(44)

Here, all the four roots of the system are found to be imaginary, if the value of the mass ratio µ of the system lies within
the range 0 < µ < µc

(33). This, in turn makes the equilibrium points L4 and L5 stable (33,37). In Equations (44), ν1,2 are the
frequencies of the long- and short-periodic orbits. As all of the roots are proved to be imaginary, we can write the solution of
Equations (14) to be

ξ ( f ) = α1cos(ν1 f )+α2sin(ν1 f )+α3cos(ν2 f )+α4sin(ν2 f ),

η( f ) = β1cos(ν1 f )+β2sin(ν1 f )+β3cos(ν2 f )+β4sin(ν2 f )
(45)

We have chosen the Saturn-Titan system (µ = 0.0002461294, A1 = 0.0000981153) to examine the Tadpole orbits under the
CRTBP with the oblateness of the more massive primary and to understand the effect of A1 on the tadpole orbits. The initial
conditions (21) of Equations (45) are ξ0 = ξ (0) = α1 + α3,ξ

′
0 = ξ ′

(0) = α4ν2 +α2ν1,η0 = η (0) = β1 +β3,η
′
0 = η ′

(0) =
β4ν2 +β2ν1.The coefficients are related to each other (21) as:

α1 =− 2β2v1+Ωxyβ1
v2

1+Ωxx
, α2 =

2β1v1−Ωxyβ2
v2

1+Ωxx

α3 =
−2β4v2−Ωxyβ3

v2
2+Ωxx

, α4 =
2β3v2−Ωxyβ4

v2
2+Ωxx

β1 =
2α2v1−xyα1

v2
1+Ωyy

, β2 =− 2α1v1+Ωxyα2
v2

1+Ωyy
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β3 =
2α4v2−Ωxyα3

v2
2+Ωyy

, β4 =− 2α3v2+Ωxyα4
v2

2+Ωyy
.

The initial conditions for the current case (sample orbits) are chosen to be ξ0 = 0.0001, ξ ′
0 = 0.005,η0 = 0.0001,η ′

(0) = 0.005
and the system of equations are solved using MATLAB to get the coefficients α1,α2,α3,α4 and β1,β2,β3,β4 of the Equations
(45). Among these coefficients, α1,α2,β1,β2 correspond to the long-periodic orbit and α3,α4,β3,β4 correspond to the short-
periodic orbit.

[ Figure 6 ] shows the long- and short-periodic orbits of the Saturn-Titan System. The periodic eccentricity and the semi-
major axis of the long- and short-periodic orbits can be calculated by using the Equations (18) and (19).The eccentricity and the
semi-major axis of the long-periodic orbit are 0.9943196 and 9.448440e-04, respectively in the non-dimensional frame when
A1 = 0. When A1 is included, both the values increase and become 0.99432100 and 9.4495728e-04, respectively. Considering
the short-periodic orbit, the eccentricity decreases from 0.5535525 to 0.5533317 and the semi-major axis increases from
1.3287025e-04 to 1.3287564e-04 by taking A1 into account. [ Figure 5 ] gives the combined long- and short-period, the Tadpole
orbit plotted for the Saturn-Titan system for 400 Earth days. The tadpole orbit is affected by A1 and shows a shift of up to 100
km in its trajectory in the dimensional frame.

Figures 7 and 8 shows the frequencies of the Tadpole orbits. It is clearly seen that the values locally repeat with a time period
given by the short-period over amean line which tends to vary with a frequency of the long-period.The orbital frequency of the
long- and short-periodic orbits are 0.0399984 and 0.9991997, respectively, in the unperturbed CRTBP. When oblateness effect
is included, the frequency of the long-periodic orbit increases to 0.0400031 and that of the short-periodic orbit decreases to
0.9991400.Therefore, whenA1 ̸= 0, time period of the long-periodic orbit (T1) decreases and that of the short periodic orbit (T2)
increases. In the synodic system, the orbital period of the long- and short-periodic orbits are 157.0676 and 6.2886, respectively.
The orbital period of Titan around Saturn is 15.945 Earth days. Taking that into account and converting the synodic system
into dimensional coordinates, the long-period of the Tadpole orbit is 398.5944 Earth days and the short-period is 15.9587 Earth
days.

Fig 5. Tadpole orbit around triangular equilibrium point L4 in Saturn-Titan System for 400 Earth days

https://www.indjst.org/ 4183

https://www.indjst.org/


Arantza Jency et al. / Indian Journal of Science and Technology 2020;13(39):4168–4188

Fig 6. Long- and short-periodic orbits of Tadpole orbits (Saturn-Titan system)

Fig 7. Frequencies of the Tadpole Orbits (position)
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Fig 8. Frequencies of the Tadpole Orbits (true anomaly)

6 Three-Dimensional Case

The equations of motion in the three-dimensional case are (10)

x
′′ −2ny

′
= Ωx,

y
′′
+2nx

′
= Ωy,

z
′′
= Ωz,

(46)

where

Ω =
n2

2
(
x2 + y2)+ [

1−µ
r1

+
µ
r2

+
(1−µ)A1

2r3
1

− 3(1−µ) A1z2

2r5
1

]
. (47)

With

r2
1 = (x−µ)2 + y2 + z2,

r2
2 = (x+1−µ)2 + y2 + z2.

(48)

Similar to the planar RTBP, in the three-dimensional case also, the singularities are obtained by equating x
′
,y

′
,z′ and hence

Ωx,Ωy,Ωz to zero. It can be proved that the system gets five equilibrium points in the xy-plane and the points are located in
the same places as in the planar case (10). At the equilibrium points, Ωxz = Ωyz = 0, hence, the variational equations are given
by (10)

ξ ′′ −2nη ′
= Ωxx (a,b,c)ξ +Ωxy (a,b,c)η ,

η ′′
+2nξ ′

= Ωxy (a,b,c)ξ +Ωyy (a,b,c)η ,

ζ ′′
= Ωzz(a,b,c)ζ .

(49)
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where, x = a+ ξ , y = b+ η , z = c+ ζ . The second derivatives are to be evaluated at the equilibrium points. The motion,
therefore, in the xy-plane does not influence the motion in the z-direction at the five equilibrium points. The mean in the
z-direction is also affected by the second derivatives, whose relation at the collinear points is

Ωxx + Ω yy + Ωzz = 2n2.
The mean motion in the z-direction is

sz =
√
−Ωzz =

√
Ωxx +Ωyy −2n2, (50)

sz = 1+
3A1

2
(3−µ)> n. (51)

sz = 1+
3A1

2
(3/2−µ)> n. (52)

Equation (50) gives the angular velocities sz for the triangular points L4,5. This value is always greater than the mean motion of
the primaries (10) as observed from [ Table 8 ] and Equation (51). Equation (52) provides sz when the mean motion is n2 = 1 +
3A1/2. From Equations (51) and (52), we easily notice that sz increases further with the new mean motion.This result will play
an important role in studying three-dimensional periodic orbits around the triangular points with oblateness.

7 Results
The oblateness of the more massive primary is known to increase the mean motion of the primaries. With the secular
perturbations included on argument of perigee (ω) and right ascension of ascending node (Ω) in the expression of mean
motion, it is seen to further increase. With the new mean motion expression, the locations of the five equilibrium points of the
circular restricted three-body problem are studied. The collinear equilibrium points move towards the more massive primary
for all the three points, which is a new result. As opposed to this, the triangular points shift away from the origin in the x-
direction due to oblateness. And, the x-location of the triangular points are found to be unaffected by the change in mean
motion. However, the y-location is significantly affected by the change in mean motion. The points shift towards the origin in
the y-direction and decrease by a high coefficient in the linear term of A1. In the stability of the collinear points, the effect of
oblateness on the eccentricities of the periodic elliptic orbits around the collinear points in conditional stability is changed by
the newmeanmotion expression.The eccentricities for the points L1 and L3 increase but that for L2 is decreases by the changed
mean motion. This is a new result. The critical mass ratio for the triangular points are obtained. The critical mass ratio shows
a further significant decrease due to the oblateness with new mean motion. Stability of the triangular equilibrium points for
various cases of astronomical interest are studied. Series expansion of the angular frequencies till the linear terms suggest that
both s4 and s5 increase with oblateness. s4 shows further increase in its value due to new mean motion. The eccentricities of
the retrograde periodic orbits around L4,5 when µ = µc are found. Till linear terms of A1, the eccentricity is not affected by
the change in mean motion; but an increase is observed when higher order terms in A1 are considered. The tadpole orbits of
the Saturn-Titan system get an increase in their time period of the short-periodic orbit and a decrease in the period of the
long-periodic orbit.The study about the three-dimensional case of the equilibrium points brings out that the meanmotion szof
triangular points in the z-direction increases further significantly with the new mean motion.

8 Conclusion
TheCRTBP with the more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion
is studied. A new mean motion expression for this study is used which is obtained by using the secular perturbation effects of
oblateness of the more massive primary on the mean anomaly, argument of perigee and the right ascension of the ascending
node (1). This increases the value of mean motion of the primaries. With this mean motion value, the locations of the five
equilibrium points in the planar problem are found. The shifts in their locations due to the oblateness effect are studied. It is
interesting to note that all the three collinear points move towards the more massive primary with oblateness. It is a new result.
Among the shifts in the collinear points, L3 shows the highest shift towards the more massive primary. And, when the shifts
of all five equilibrium points are compared, the y-coordinate of the triangular point is the highest. The linear stability of the
collinear equilibrium points is studied. It is very interesting to note that the eccentricities (e) of the orbits around L1 and L3
increase, while it decreases around L2 with the addition of oblateness with the newmeanmotion.The decrease in e is significant
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in Saturn-Mimas system from 0.95036 to 0.87558. For the triangular equilibrium points, the critical mass ratio µcwithin which
the system remains linearly stable is calculated in terms of the oblateness coefficient. The effect of the change in mean motion
value is clearly seen in the expression for critical mass ratio. µc further decreases significantly from 0.285 . . .A1 to 0.365 . . .A1
with the newmeanmotion. Linear stability of the triangular equilibriumpoints when themass ratio is within the limit andwhen
it equates to the critical mass ratio µc are studied. The periodic retrograde motion around the triangular equilibrium points in
both of the cases are studied. The combined long- and short-periodic orbits around the Saturn-Titan system are studied. The
study is extended to the three-dimensional case and themeanmotion sz in the z-direction for the triangular points is calculated.
The mean motion Sz increases significantly with the new mean motion from 9A1/4 to 9A1/2.
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