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Abstract

Background/Objectives: Water mains are part of a drainage network that gen-
erally supplies fresh water to the households within council (municipal) lim-
its. Most councils set a benchmark minimum water pressure (kPa) and a flow
rate (I/min) that must be delivered to households. A typical drainage network
may consist of straight pipe with different bends, reducers, expansions and sev-
eral fittings, all of which contribute to loss of pressure in the fluid system. The
main objective of this paper is to compare different gradients of reducers using
Applied Computational Modelling techniques. This comparison is performed
in terms of pressure drop across the section, the total pressure on the reduc-
ing face and regular forces on the inner face of each reducer on two types of
reducers, i.e. Concentric and Eccentric. Methods: In this paper, computational
analyses using CFD tools are applied to a pipe from a typical water mains line
consisting of a concentric reducer that generally holds a certain amount of pres-
sure. Comparison between different gradients of reducing face of both con-
centric and eccentric reducers has been performed in terms of pressure drop
across the section, the total pressure on the reducing face and normal forces
on the inner face of each reducer. Polyethylene (PE) stub flanges and galva-
nized backing rings are attached to the pipe. The material properties for the
pipe and the reducer are set to high-density polyethylene (HDPE), and they
are butt-welded together. The simulation and analysis are performed using
SOLIDWORKS-CFD/FE software. Findings: The simulation results show the pre-
dicted flow trajectories of the fluid flowing through both reducers depicting
difference in flow trajectories and their consequent effect on fluid system and
the system'’s structure in terms of Pressure drop, water force etc. when the
reduction is changed from concentric to eccentric. Applications: The quanti-
fied flow simulation is used to optimize the section design according to the
dynamic pressure head required. The results show that the optimized reducer
serves better than conventional reducers.
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1 Introduction

Head pressure is the force that pushes water through pipes. Most councils set a benchmark minimum water pressure (kPa)
and a flow rate (I/min) that must be delivered to households. For example, Watercare which manages water distribution in the
Auckland region of New Zealand, maintains a minimum head pressure of 200 kPa and a flow rate of 25 (1/min) M, Consequently,
Watercare advises households that before installing any flow-restricting devices or low-flow showerheads, they must install a
hot water cylinder with mains (equal) water pressure or low (unequal) water pressure!. This is necessary because some flow-
restricting devices and low-flow showerheads are not compatible with a hot water cylinder with low (unequal) water pressure.
Conversely, Hamilton City Council, which provides water distribution for the Hamilton region acknowledges that the water
pressure varies around the city and depends mainly on where the property is located ®). For example, the central business
district has up to 92 meters of head (901.98 kPa of head pressure) whereas other areas have a minimum of 10 meters’ head
(head pressure of 100 kPa). The council states that each house has a flow rate of 25 (I/min) available. Auckland’s water derives
mainly from dams and an aquifer, with a (limited term) back-up arrangement to draw from the Waikato river®. Hamilton’s
water supply comes from the Waikato River .

This could be to the fast population growths in Auckland, and therefore, there is a high demand for a high dynamic pressure
head to households and other facilities. This only means that Auckland council surely has to have much more powerful water
systems than Hamilton council, which means either use of bigger pumping facilities (which use more energy) or use of smarter
line systems (with lower minor head loss due to fittings) minimizing overall head losses.

The literature reveals that many cities worldwide face issues with delivering sufficient water to a growing number of
households and businesses and are seeking solutions to maintain a sustainable supply of water reach to each household *-7.
Unfortunately, freshwater is often wasted in the delivery process due to deficient infrastructure: it is estimated that leakage from
pipes causes more than 32 billion cubic meters of water, annually, to be wasted from water mains worldwide ®. Greater demand
distributes the water flow further. For example, in crowded cities such as Hong Kong, residents consume around 1200 Mm3
year-1 (i.e. the per capita daily consumption is 408 L day-1) of water annually, and this amount will grow to 1315 Mm3 year-1
in 2030®. All of these issues will reduce the dynamic pressure head delivered to each household.

Computational modelling techniques are reliable tools to estimate pressure drop and understand nonidealities in pipe
fittings ). Therefore, we are using computational analyses using CFD tools are applied to a section of pipe system from a typical
water mains line consisting of a concentric reducer that generally holds a certain amount of pressure. Comparison between
different gradients of both concentric and eccentric reducers is performed in terms of pressure drop across the section, the total
pressure on the reducing face and regular forces on the inner face of each reducer. This helps designers better understand the
difference a little extra gradient can make in terms of pressure drop, the effect a sudden contraction can cause in the system and
how we can reduce the adverse effects by switching from eccentric to concentric reducers where possible and by using gradual
contraction instead of sudden contraction in the system.

In terms of mechanical engineering, the force that acts on the reducing face parallel to the flow line dictates the shear force
acting on the adjacent butt weld, and the CFD simulations show the difference in the water force that acts on higher and lower
gradients of the same reducing face. All of this adds up to minimizing the head drop to the end user and a better overall water
delivery system.

2 Design and material properties

The proposed designs are shown in Figure 1 (b) and (d). They illustrate the assembly for the pipe with concentric and eccentric
reducers, respectively, along with the stub flange and Galvanized Backing Ring. The Figures show the section of the system
representing a reduction of pipe size from DN300 to DN200. The larger pipe with polyethylene material properties is the DN300
setup, which has an OD of 315 mm whilst the smaller side has a DN200 pipe with an OD of 200 mm. The pressure rating of
the pipe is PN16, which means the section can hold 16 bar of pressure. The fitting reducers are also set with a PN16 rating
and are made from Polyethylene (PE) in four different designs: Concentric; Concentric KB-Optimized reducer; Eccentric; and
Eccentric KB-Optimized reducer.
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Fig 1. Section details for (a) Eccentric reducer; (b) Eccentric reducer kB; (c) Concentric reducer; and (d) Concentric reducer kB.

The Stub-flanges are butt-welded to the PE pipes and are also rated to PN16 and constructed of PE materials. The Backing
Rings are in two different sizes used on both ends of the section. These rings are bolted onto the rest of the system, and they are
set to Galvanized materials. The mechanical Material properties for the PE and Galvanized steel are shown in Table 1.

Table 1. Material properties for PE and galvanized steel.

Material PE high density Galvanized Steel
Tensile Strength (MPa) 22.1 356.9

Young’s Modulus (GPa) 1.07 200

Poisson’s ratio 041 0.29

Shear Modulus (GPa) 0.3772 NA

Density (kg/m3) 952 7870

The PE parts are butt-welded together hence are considered “bonded” in the CFD analysis, which will treat it as though they
are welded in its analysis. The backing rings are to be bolted to the system from which the section is taken. The connection
between the backing ring and the stub flange is to be taken as “no penetration” in CFD analysis, which means the backing ring
is pressed against the back face of the stub flange but the materials do not penetrate each other.

A mixed flow of laminar and turbulent nature is used for the CFD analysis and their subsequent forces are taken into account

in the FEA static analysis. The fluid properties for water, dynamic viscosity (0.001002 Pa.s) and the density (1000 kg/m3), are
taken into account.
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3 Computational domain and mesh generation

All the parts have been created using SOLIDWORKS and the following settings were set for the simulation within the wizard
setup: analysis type is set as an internal flow with adiabatic wall; flow type is set to Laminar and Turbulent; water is the default
fluid; the roughness value is 3 micrometres; and initial conditions are set to atmospheric pressure and temperature of 101.325
kPa and 293.2 k, respectively.

The conservation laws for mass, angular momentum and energy in the cartesian coordinate system rotating with angular
velocity  about an axis passing through the coordinate system’s origin using the following Equations:

dp 0
oP 9 (5= 1
8t+8xi(pul) 0 (1)
L) S S
o1 + Ix; (puiuj) + o ox; (1,J+rij) +8i=1,2,3 2

Where u is the fluid velocity, p is the fluid density, S; is a mass-distributed external force per unit mass due to a porous media
resistance.

In this study, we used the laminar/turbulent boundary layer model using the Direct Numerical Simulation (DNS) which
describes in near-wall regions and investigates the transitions from laminar to turbulent flow and vice versa using Van Driest’s
profile.

Setting the inner face of the outlet lid as static pressure opening as outlet boundary condition (as shown in Figure 2 ) and the
inlet boundary conditions with an arbitrary volume flow rate through the inlet lid to 25 1/min, in accordance with the Hamilton
Council and Auckland Watercare flow conditions. Setting goals to define the project inlet, outlet average pressure and average
velocity on inner faces of respective lids conditions. We set up an equation goal to calculate the total head loss:

P] — P2 V% — V%
P8 28

Mot = hy + Y. m = 3)

InletYalume Flow:
0.01 m*3is

Envitonment Pressure
101325 Pa

Fig 2. A symmetrical boundary conditions view to the model showing the inlet, outlet, fix ends and the fluid domain.
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This allows us to retrieve the head loss h;y,; value from the goal plot under the results. Then we set surface goals on
the reducing face (where the fluid hits the reducer) for normal forces in all three directions, and force in the x-direction.
This will allow us to record and analyze visual results to predict flow patterns. We then export the CFD results to the FEA
simulation. We fixed both ends of the pipe and set up a bonded-welded contact and no penetration (pushed together but there
is no bond between stub flange and backing with the DN300 and the Galvanized backing ring with the DN200 PE pipe). The
SOLIDWORKS flow simulation solves the governing equations with a discrete numerical technique based on the finite volume
(FV) method. A cartesian rectangular coordinate system is used in our models. The mesh details depicted by SOLIDWORKS
are as follows: total nodes (23731), total elements (11973), Maximum Aspect Ratio (21.89) and % of elements with Aspect Ratio
< 3 is 85.8 as shown in Figure 3. To achieve an acceptable grid independency, the simulation was repeated for a different number
of elements until the grid independencies were achieved.

Model nameiReducer assembly
Study name:Concentric KB Static-Concentric KB -
Mesh type: Solid Mesh

@ BR[|

g5

B f‘rojects . :
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=] @ Input Data
: @ Computatienal Domain
Fluid Subdemains
| Boundary Conditions
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Fig 3. Mesh generation for the concentric KB design for FE analysis.

4 Results and discussion

The results obtained from SOLIDWORKS for the FE analysis provide the max and min load Von Mises stress values, as shown
in Figure 4 . This Figure illustrates the critical areas for the materials to yield or fracture. The eccentric KB design shows the
most significant promise in terms of reducing the likelihood of fracture compared to the standard eccentric reducer. All the
reducers are further investigated as to their performance in terms of flow velocity.
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Fig 4. Von Mises Stress analysis; (a) Reducerassembly-Concentric; (b) Reducer assembly-Concentric KB (c) Reducerassembly-Eccentric; and
(d) Reducer assembly-Eccentric KB.

Figure 5 shows the velocity profile for the four different CFD simulated designs. The results for the eccentric kB reducer
supports the outcome for Figure 4 : this design is best for handling dynamic pressure.

https://www.indjst.org/ 4527


https://www.indjst.org/

Al-Rawi et al. / Indian Journal of Science and Technology 2020;13(45):4521-4531

Vielacityfeés]

Cut Piat 2 contours l i

() (d)

Fig 5. Velocity analysis for the four designs using CFD (a) Reducer assembly-Concentric KB; (b)Reducer assembly-Concentric; (c) Reducer
assembly-Eccentric KB and (d) Reducerassembly-Eccentric

The main aim of this research is to reduce the impact for (force in x-direction) on the reducing face of the reducer to avoid

leakages. The optimized reducers produced many outcomes based on our goal plots setup as shown in Tables 2 and 3 .

Table 2. Result comparison for concentric type reducers kB.

Goal Name Unit Concentric Concentric KB -Optimized
SG Av Total Pressure Inlet [Pa] 101524.44 101495.79
SG Av Velocity Inlet [m/s] 0.200 0.200

SG Av Total Pressure Outlet [Pa] 101453.46 101452.13
SG Av Velocity Outlet [m/s] 0.49 0.49

SG Av Total Pressure Reducing face [Pa] 101500.64 101462.20
SG Normal Force (X) Reducing face [N] 5.25 3.95

SG Normal Force (Y) Reducing face [N] 0.000638 -0.000378
SG Normal Force (Z) Reducing face [N] -0.001669 -0.002847
SG Force (X) 1 [N] 5.26 3.96
Pressure head difference [m] 0.0072 0.0044
Velocity head difference [m] -0.0105 -0.0105
Head Loss [m] -0.0033 -0.0060

Tables 2 and 3 show the force acting in thex-direction, or the normal force on the reducing force, is decreased by using the
optimized reducer. Less force on the reducing face will exert less parting force on the weld that bonds the reducer to the straight
pipe, this means less chance of weld failure which is the ultimate goal in reducing leakage. This agrees with Figure 5, which
shows the velocity distributions with a smoother transition which directly relates to the system stability.

A reduction is identified in Von Mises stress by using the optimized reducer which ensures the safety of system. An easier
transition of cross section, in the concentric reducer’s case, helps the fluid glide across the system and decreases normal forces
exerted by the fluid onto the system walls.
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Table 3. Result comparison for Eccentric type reducers kB.

Goal Name Unit Eccentric Eccentric KB -Optimized
SG Av Total Pressure Inlet [Pa] 101556.41 101488.24
SG Av Velocity Inlet [m/s] 0.200 0.200

SG Av Total Pressure Outlet [Pa] 101458.46 101454.52
SG Av Velocity Outlet [m/s] 0.497 0.498

SG Av Total Pressure Reducing face [Pa] 101540.64 101440.35
SG Normal Force (X) Reducing face [N] 6.51 3.51

SG Normal Force (Y) Reducing face [N] -1.85685E-17 0.372039604
SG Normal Force (Z) Reducing face [N] 1.0276E-16 -0.001383421
SG Force (X) 1 [N] 6.51 3.54

Pressure head difference [m] 0.009984 0.003437
Velocity head difference [m] -0.010582 -0.010630
Head Loss [m] -0.000598 -0.007193

But an increment is noted in all three results for eccentric reducer optimization. These stresses are noted at two different
locations; that is, the location of the max stress is different in both cases. This means, with the optimized reducer, the stress
concentration is changed to the reducing face, which is further away from the weak point of the assembly which is at the weld
between the reducer and the straight pipe. It still enhances the system and the fluid flow is much smoother, as shown in Figure 6 .
This figure shows the pressure and velocity distributions for the eccentric kB reducer. Also, from Figure 6b shows a very smooth
velocity streamlines, which means fewer vortexes developed at the eccentric reducer. Since the eccentric reducer has a much
larger surface to counter the water forces in x-direction hence the most significant reduction in forces out of all the iterations,
Eccentric KB showed the best results. However, all the iterations showed that the gradual reduction in size of the pipeline, better
the results in terms of forces acting on the reducing face and better the flow trajectories of the system.

Smooth flow

1014759 0541
10145508 art
10143472

{ 1011338
10139248
10137182
10135075
10132888
10130982
10128815

Pressurs Pa)

Vatoe iy ]

CulPiot 1 cantours CutPiot 2 eostours

(© (d)

Fig 6. Pressure and velocity contours for the Eccentric kB and Eccentric reducers; (a) pressure contours for Eccentric kB, (b) velocity streamline
for Eccentric kB, (c) pressure contours for Eccentric kB and (d) velocity streamline for Eccentric.

Additionally, we set up a probe sensor on both the reducers to check the reduction in stress for the eccentric KB reducer as
shown in Figure 7.

Overall, there is head gain noted in both the optimization scenarios. CFD and FEA for normal reducers showed the stress
locations being near the weld which can cause weld failure whereas the stress locations for optimized reducers show the
concentration is away from the weld, which is favored for system stability.

https://www.indjst.org/ 4529


https://www.indjst.org/

Al-Rawi et al. / Indian Journal of Science and Technology 2020;13(45):4521-4531

won Mises (Nfmm*2 [MMPa))

1.154e-03

' 1.057e-03
9.614e-04

Mode: 9356 I

5%, Y, T Location:| 20, 1.5, 116 mm - B.652e.04

I"‘33‘“'1-154'-‘-(:'3 | Walue: 7.104e-04 N/mmA2 (MPa) . T.651e.04

5.730e-04

S T804

4.507e-04

3.545e-04
258404
1.523e-04
9.614e-05

3.967e-09

won Mises [N/mm”2 (MPa))
2.387e-03
2.183e-03
. 1.985e-03

. 1.786e-03

_ 1.588e-03

Mode: 8011
. 1.3859e-03
SX, Y, Z Location: |0, 70.1, 107 mm
11903

5.824e-04 N/mm*™2 [MPa)

9,923e-04

7.958e-04

5.954e-04

3.969e-04

1.5685e-04
0,000 +00

(b)

Fig 7. Probe sensor for max stress for eccentric reducers; (a) Probe sensor result for eccentric reducer and (b) Probe sensor result for eccentric
KB Optimized reducer.

One limitation of the models was the lack of options to include butt-welding in the system. The system is shown as different
parts bonded together and considered as a perfect bond whereas in real life the weld is probably the weakest point, thus the
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most likely point where a system fails. Therefore, a safety factor should be applied to overcome any discrepancies.
Aside from that, the outcome of the study is in line with a general predicted behavior of a reducer e.g. stress concentration
is recorded on the bigger side of reducers and higher velocity is recorded on the smaller side of the reducers.

5 Conclusion

In this article, computational fluid dynamic (CFD) analysis tools are used to compare the performing reducer from four
designs, featuring standard concentric, concentric KB-optimized, standard eccentric, and eccentric KB-optimized reducers.
Each reducer was constructed of high-density polyethylene (HDPE) material. Analyses were performed in terms of pressure
drop across the section, the total pressure on the reducing face and the normal forces on the inner face of the reducer. The results
of the CFD modelling could be used to adjust the section according to the system requirements. The Eccentric KB-Optimized
reducer turned out to be the best design in terms of reducing the risk of fracture under different flow velocities. In addition,
the results showed less force on the reducing face which exerted less parting force on the weld that bonds the reducer to the
straight pipe, this means less chance of weld failure which is the ultimate goal in reducing leakage. Therefore, The Eccentric KB-
Optimized reducer served this function better than both types of concentric reducers, and the conventional eccentric reducer.
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