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Abstract

Objective: To maximize the accuracy of classifying the medical wastage,
an Enhanced Segmentation Network (EnSegNet) with Deep Neural Network-
Trash Classification (EnSegNet-DNN-TC) is proposed in this article. Methods:
Initially, a core trainable segmentation network called SegNet framework is
proposed which uses the Encoder-Decoder Network (EDN) and a pixel-wise
classification layer for image segmentation. The decoder is used to upsample
its low-resolution input feature maps via max-pooling. Also, SegNet uses fewer
parameters for training. The uncertainty inherent to the EDN is modeled by the
Bayesian functions to segment the input images. But, this SegNet can sample
a limited amount of pixels in the images. Hence, an EnSegNet is proposed that
uses Content-Sensitive Sampling (CSS) to sample more pixels in the data-sparse
regions and fewer pixels in data-dense regions. Once the segmentation is
completed, the DNN is applied for classifying the wastage using the segmented
images. Findings: The experimental results show that the EnSegNet-DNN-TC
framework achieves 88% accuracy compared to the DNN-TC for considering
100 images of different categories of biomedical wastes from the trash image
dataset.

Keywords: Biomedical wastage classification; deep learning; image
segmentation; ResNext; encoder-decoder network

1 Introduction

Biomedical wastage normally creates from human, animal healthcare, medical training
and research, biological laboratory wastage and other facilities. Part of the wastage
stream is contagious or possibly harmful and should be carefully handled to protect
health and sanitation workers. Typically, biomedical wastage are regulated and
controlled based on different standards and protocols in various nations. In healthcare
applications, the wastage are produced during inappropriate management which causes
a direct health impact on the public, the atmosphere and the healthcare personnel.
Biomedical wastage are a dangerous health hazard to the community, hospital,
healthcare units, flora and fauna of the region. It should be accumulated in

https://www.indjst.org/

141


https://10.17485/IJST/v14i2.2137
https://doi.org/10.17485/IJST/v14i2.2137
https://doi.org/10.17485/IJST/v14i2.2137
mythilitphd@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/

Mythili & Anbarasi / Indian Journal of Science and Technology 2021;14(2):141-153

a secure atmosphere at all times and must not be mixed with a chemical, radioactive or other laboratory trashes 1.

Nearly 75-90% of the biomedical wastage is non-dangerous and as harmless as any other wastage. The rest 10-25% is
dangerous and may be harmful to humans or animals or the atmosphere. The Government of India states that biomedical
wastage is a part of hospital hygiene and maintenance activities. The World Health Organization (WHO) has classified
biomedical wastage into different types such as common wastage, contagious or hazardous wastage, radioactive, chemical,
pathological, pressurized containers and drugs. Also, a series of training modules on better practices have been developed
by the WHO in biomedical wastage management covering all features of wastage management activities from detection and
classification of wastage for directing their secure disposal using both non-incineration and incineration policies.

In recent decades, the classification of biomedical wastage has been interested which is a promising application of computer
vision. One of the easiest methods for automatically classifying the wastage or trash is deep learning algorithms that can detect
and classify the wastage by using the images®). Many Convolutional Neural Network (CNN) frameworks such as ResNext,
ImageNet, VGG, ResNet, MobileNet, DenseNet and RecycleNet> have been available for biomedical wastage classification
process using images. Among those algorithms, ResNext was the best framework for Transfer Learning (TL) to categorize the
trash.

This ResNext framework has been used by Vo et al.©) to design a DNN-TC framework that automatically classifies the trash
in smart wastage sorter machines. At first, the trash image dataset was collected which comprises many images belonging to
various classes: organic, inorganic and medical wastage from Vietnam. Then, a DNN was applied which was an enhancement
of ResNext for increasing the classification accuracy. The standard ResNext-101 was modified by adding two Fully Connected
(FC) layer for reducing the redundancy. In the data preprocessing step, the brightness of input images was normalized. After
that, horizontal flip and random crop methods were applied to the input images for generating more images in the training and
testing. During the training process, the pre-trained weight was loaded from the actual ResNext-101 on the ImageNet dataset.
Then, the fine-tuned process was performed for learning the features of wastage from the trash dataset and the framework
with the best accuracy was chosen by estimating the testing dataset for classifying the final output of each input image. Here,
the confidence for each class was computed by the log softmax function in the last layer. Though it achieves the best accuracy,
a segmentation technique was required for preprocessing the input images and further improving the efficiency of trash or
wastage classification.

Therefore, in this article, an EnSegNet-DNN-TC framework is proposed for increasing the performance of the wastage
classification. Initially, a core trainable segmentation network called SegNet framework is proposed for preprocessing the input
images. It has the EDN which is topologically equal to ResNext-101 architecture and a pixel-wise classification layer. The decoder
mainly upsamples its input feature maps by max-pooling. Also, it uses the reduced number of parameters for training. Moreover,
the uncertainty inherent to the EDN is modeled via the Bayesian functions for segmenting the input images. But, it can a sample
limited amount of pixels in the images. As a result, an EnSegNet is proposed that uses CSS to sample more pixels in the data-
sparse regions and fewer pixels in data-dense regions. Thus, this EnSegNet is learned to use the sampled pixels for segmenting
the image into data-sensitive super-pixels. Then, the segmented image is fed to the DNN for efficiently classifying the trash.

The rest of the article is prepared as follows: Section 2 studies the researches related to the wastage classification. Section 3
describes the functioning of EnSegNet-DNN-TC and Section 4 portrays its performance. Section 5 summarizes this research
work and suggests future scope.

2 Literature Survey

Kennedy ”) proposed an OscarNet using TL for classifying the disposable wastage. In this model, a large CNN was pre-trained
for the ImageNet process. Also, the FC layers were removed and a single hidden dense layer was added for classifying the
images of disposable wastage into different types. However, it was not suitable for training features of multiple large CNNs
simultaneously. Also, the decoding time was high due to the high dimensionality of the feature maps.

Chu et al.® proposed a Multilayer Hybrid deep-learning System (MHS) for automatically sorting the wastage disposed by
individuals in the urban regions. First, the wastage images were acquired and fed to CNN for extracting the image features.
Also, a Multi-Layer Perceptron (MLP) method was used to consolidate images and other features for classifying the wastage as
recyclable or others. But, its efficiency was poor when wastage items lack distinctive image features.

Aral etal. ¥ analyzed different deep learning models such as DenseNet, InceptionResNet, MobileNet and Xception structures
for classifying the Trashnet dataset. Here, Adam and Adadelta were applied as the optimizer in these network structures. But,
the accuracy rate was not effective in real-time systems because of a comparatively small amount of data and white background
of the images.

https://www.indjst.org/ 142


https://www.indjst.org/

Mythili & Anbarasi / Indian Journal of Science and Technology 2021;14(2):141-153

Adedeji & Wang!? proposed an intelligent wastage classification by ResNet. Here, Support Vector Machine (SVM) was
used rather than the FC layer and optimized by the radial basis kernel for classification. But, the accuracy was not effective.
Sousa et al. ') suggested a hierarchical Faster Region-based CNN (FR-CNN) for identifying and classifying the wastage in
food trays. Also, a novel dataset called labeled wastage in the wild was collected and annotated for classification. However, the
mean average precision was less and the complexity was high.

Xue et al. 1?) proposed CNN for realizing the fast analysis of fertilizer via evaluating different fertilizing phase images. Here,
images of various fertilizing ingredients were gathered for constructing the dataset which was classified by CNN. But, the
training was complex while increasing the network layer numbers and parameters. Mazloumian et al.'* recommended DNN
for classifying the food wastage using preprocessing and classification. The preprocessing was used for enhancing the images
via scaling, background subtraction and Region-Of-Interest (ROI) cropping. Then, deep CNN was employed to classify the
wastage. But, the accuracy was less.

Togacar et al.1¥) designed an auto-encoder with integrated feature selection in CNN for categorizing the wastage. First,
the dataset used for the classification of wastage was reconstructed with the auto-encoder network. Then, the feature sets were
extracted and fused using CNN. Also, the ridge regression was applied on the fused feature set to reduce the number of features
and SVM was used for classification. But, it was not suitable for multi-class datasets.

Nowakowski & Pamula® proposed a new method for classifying and identifying the e-wastage. In this method, CNN
was applied for classifying the types of e-wastage whereas FR-CNN was used for identifying the type and size of the wastage
equipment in the images. Once the size and types of wastage were automatically classified and identified from the images,
a collection plan was prepared by the e-wastage collection organizations via allocating the adequate amount of vehicles and
payload capacity for a specific e-wastage project. However, complexity was high while using large-scale datasets.

A multi-level approach 1) was introduced for segmenting the waste objects. First, the scene-level segmentation was applied
to capture the long-range spatial contexts and create a primary coarse segmentation. Then, few possible object areas were chosen
by the coarse segmentation and an object-level segmentation was performed. After, the scene and object-level outcomes were
combined into a pixel-level FC conditional random field for generating the coherent final localization. But, its robustness was
less while performing on multiple datasets with large object appearance.

3 Proposed Methodology

In this section, the EnSegNet-DNN-TC framework is explained in detail. Generally, SegNet framework is stimulated by the
unsupervised feature learning structure. The core training unit is EDN. The encoder encompasses the convolution with filters,
pixel-wise tanh non-linearity, max-poling and sub-sampling for obtaining the feature maps. The highest feature maps in the
encoder are accumulated and transferred to the decoder which upsamples them by the accumulated combined variables. Then,
the actual image is restored via convolving the upsampled maps.

3.1 Design of SegNet framework

Typically, SegNet comprises the EDN and the pixel-wise classifier. Its major parts are shown in Figure 1. It is only the convolution
(conv) layer since no FC layers exist. The decoder can upsample its input via the max-pooling for generating the sparse feature
maps. After, conv with the filters is performed for densifying the feature maps. Moreover, the resultant decoder feature maps
are given to the softmax for segmenting the images in a pixel-wise manner.

The encoder involves 13 conv layers similar to the VGG16(!”) and so the training process can be initialized from the weights
learned to segment and classify the huge amount of images. For retaining high-resolution feature maps and minimizing the
number of training parameters, the FC layers are removed.

Each encoder has a compatible decoder so that there are 13 layers in the decoder. The resulting decoder outcome is given to
the multi-class softmax classification to create separate class likelihoods for all pixels. The group of feature maps is generated
by conv with the filters in the encoder.

After that, these are batch regularized using an element-wise Rectified Linear Unit (ReLU) (max (0,x)). Next, max-pooling
with a non-overlapping window is employed to sub-sample the input image. Before this task, the edge details are estimated to
reduce the loss of spatial resolution.

After sub-sampling, all feature maps of the encoder are generated while storage is not restricted. But, it is not applicable in
real-time uses. So, an efficient method is used for collecting only the highest feature values in every pooling window. A suitable
decoder upsamples its input feature maps by the highest feature values obtained in the respective encoder feature maps.

The decoding method of SegNet is shown in Figure 2 wherein a, b, c and d are the values in the feature map. Typically, it
utilizes the max-pooling for upsampling the feature maps and convolving them with decoder filters.
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Fig 2. Design of SegNet decoder

In this method, sparse feature maps are generated and convolved using the decoder filters for generating the dense feature
maps. After that, batch regularization is used on every map. Here, the decoder compatible with the primary encoder generates a
multi-channel feature map whereas the remaining decoders generate the feature maps with an equal amount of dimension and
channels in their encoder. The outcome of the resultant decoder is given to the softmax which segments all pixels separately
according to their likelihoods. But, it can sample a limited amount of pixels in the images. As a result, an EnSegNet is proposed
that uses CSS to sample more pixels in the data-sparse regions and fewer pixels in data-dense regions.

3.2 EnSegNet framework using CSS

A measurement of content-sensitiveness(ConSen) is introduced for producing the content-sensitive superpixels. It defines the
superpixel’s dimension must be responsive to the deviation of the data in the super-pixel. So, the ConSen of a super-pixel is
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measured by the fraction of the color deviation in the super-pixel (S) to the size of it.

K
Yo My,

1
S (1)

ConSen g =

In Eq. (1), K stands for the number of pixels in S, p; denotes i’* pixel in S and M, »; denotes the color deviation of p; which is

determined in horizontal and vertical orders. Here, S is a set of grouped homogeneous pixels in an image. For both orders, 2
positive and 2 negative elements are considered. Consider the pixel P (xo,yo) whose color is ¢ (xo, o), the window dimension
around P is (254 1) x (254 1). Assume H; and H, are the negative elements in horizontal order of P, H," and H, are the
positive elements in horizontal order of P.
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Here, c (x,y) is the color of a pixel at position (x,y). Likewise, the color deviation is obtained by denoting V;~,V;",V, and V,',
accordingly. After that, the color deviation of P is defined as:

M(P) =\ A2+ | Ha |+ [AVa >+ |4V (©)
Where AH; :H1+ —H (7)
AH,=H, —H; (8)

AV =V" =V ©)

AV, =V," —v, (10)

To use the density matching property of SegNet-DNN-TC, the CSS is proposed for generating the content-sensitive superpixels.
So, it produces huge clusters having the number of components while increasing the number of training images and smaller
clusters having some components while using fewer amounts of images. Thus, the major aim of CSS is that numerous pixels
have to be sampled in data-sparse areas and lesser pixels in data-dense areas. So, a likelihood of sampling pis defined as:

M(p)
Z(p)=1- 11
(p) Max (1 (11)
In Eq. (11), Max (I) is the highest deviation of color for each pixel, M (p) is the color deviation of p. A larger L (p) which signifies
pixels in data-sparse area needs to be sampled.
So, the input image for the training dataset is segmented and fed to the DNN ° classifying the biomedical wastage efficiently.
Figure 3 depicts the overall flow diagram of the EnSegNet-DNN-TC framework.
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Algorithm for EnSegNet-DNN-TC framework
Input: Image set
Output: Classified biomedical wastages classes

Initialize;
for( each input image )
Perform the encoder of EnSegNet;
Execute the decoder of EnSegNet;
for( each pixel in image )
Calculate the color variation of each pixel using Eq. (6);
Compute the likelihood of each pixel being sampled via Eq. (11);
Sample pixels in the data-sparse regions;
end for
Train the EnSegNet in end-to-end manner;
Obtain the segmented images;
Apply DNN classifier;
Find the category of biomedical wastages;

end for

End
Perform EnSegNet Encoder

!

EnSegNet Decoder

Sample pixels from the input images

!

Compute the color deviation of each pixel in horizontal
and vertical orders

v

Compute ConSen of a super-pixel

v

Calculate the likelihood of sampling a pixel

Execute DNIN I

v
Classify the types of biomedi cal wastages

Fig 3. Flow diagram of EnSegNet-DNN-TC framework

https://www.indjst.org/ 146


https://www.indjst.org/

Mythili & Anbarasi / Indian Journal of Science and Technology 2021;14(2):141-153

4 Experimental Results

In this section, the effectiveness of EnSegNet-DNN-TC is analyzed and compared with the DNN-TC framework by using
MATLAB 2017b. In this experiment, a trash image dataset is collected which consists of 200 images of different categories of
biomedical wastage: infectious waste, chemical waste, sharp waste, pharmaceutical waste and pathological waste. Infectious
wastes include blood-soaked bandages, discarded surgical gloves and masks, cultures, stocks or swabs.

The chemical wastes are various types of chemicals used in the production of biologicals, cleansing, etc. Sharp wastes are
needles, syringes, scalpels treatment, autoclaving or micro blades, glasses and so on. These may cause waving and mutilation
shredding puncture and cuts. Similarly, pharmaceutical wastes can be the site of spills, half-used bottles, IV equipment with
residual medicine on it. The pathological wastes include the materials eliminated from the body in surgery and fluids as well
as solids removed in autopsies except teeth. From this dataset, 100 images are taken for training and the remaining 100 are for
testing. The comparison is carried out based on precision, recall, f-measure, accuracy, error rate and Root Mean Squared Error
(RMSE). Figure 4 portrays the samples of the considered trash image dataset.

Chemical
waste

Infectious
waste

Sharp waste

Pharmaceuti
cal waste

Pathological
waste

Fig 4. Example samples of considered trash image Dataset
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Figure 5 portrays the experimental results of segmented images with their respective input images for the EnSegNet-DNN-

TC framework.

Input Images (in Gray-Scale)

shutterstock com = 27643

Segmented Images

Fig 5. Samples of original images and segmented images for EnSegNet-DNN-TC Framework
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4.1 Precision

It is measured according to the amount of correctly classified biomedical wastage at True Positive (TP) and False Positive (FP)

rates.

No. of correctly classified medical wastes

Precision =

No. of correctly classified medical wastes + No. of wrongly classified medical wastes

Precision

0.92

0.9

0.88

0.86

0.84

0.82

0.8

—4—DMNN-TC
——EnSeghet-DNN-TC

20 40 60 80 100

Number of Images

Fig 6. Comparison of precision

(12)

Figure 6 depicts the precision for EnSegNet-DNN-TC and DNN-TC frameworks under the different number of images. This
analysis indicates the precision of EnSegNet-DNN-TC for 100 images is 3.05% increased as compared to the DNN-TC. Thus,
it is concluded that the EnsegNet-DNN-TC can increase the precision to classify the biomedical wastes while increasing the

number of images in the dataset.

4.2 Recall

It is measured according to the classification of the biomedical wastes at TP and False Negative (FN) rates.

Recall =

No. of correctly classified medical wastes

No. of correctly classified medical wastes+ No. of wrongly classified non_medical wastes

Recall

0.9
088
0,86
0,24
0.282

0.8
07a
o7&
0774

—4—LDHNHN-TC
—-EnSeglNet-DNN-TC

Number of Images

Fig 7. Comparison of recall

(13)
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In Figure 7, the recall for EnSegNet-DNN-TC and DNN-TC frameworks with a varying numbers of images are depicted.
This analysis observes the recall of EnSegNet-DNN-TC for 100 images is 5.01% maximized as compared to the DNN-TC. So,
it is concluded that the recall of EnSegNet-DNN-TC can be increased while increasing the number of input images.

4.3 F-measure

It is computed as the harmonic average of precision and recall.

Precisi Recall
F — measure =2 X reC-lS.lOI’l o hecd (14)
Precision + Recall

0.91
0.8%
0.87
0.85

0.283
—#—DNMN-TC

——EniegMet-DININ-TC

F-measure

0.8l
079
077

075
20 40 &0 g0 100

Numnber of Images

Fig 8. Comparison of F-measure

Figure 8 portrays the f-measure for EnSegNet-DNN-TC and DNN-TC frameworks under different amounts of images. This
analysis indicates the f-measure of EnSegNet-DNN-TC for 100 images is 3.92% improved as compared to the DNN-TC. Thus,
it is concluded that the EnSegNet-DNN-TC can increase the f-measure for classifying the biomedical wastage efficiently.

4.4 Accuracy

It is the fraction of accurate classification of medical wastage over the total number of trials performed.

TP+ True Negative (TN)

(15)
TP+TN+FP+FN

Accuracy =

TP is an outcome where EnSegNet-DNN-TC appropriately classifies the biomedical wastes images as biomedical wastes. TN
is an outcome where EnSegNet-DNN-TC appropriately classifies the non-biomedical wastes images as non-biomedical wastes.
FP is an outcome where EnSegNet-DNN-TC inappropriately classifies the biomedical wastes images as non-biomedical wastes.
FN is an outcome where EnSegNet-DNN-TC inappropriately classifies the non-biomedical wastes images as biomedical wastes.

In Figure 9, the accuracy (%) for EnSegNet-DNN-TC and DNN-TC frameworks with a varied number of images are
portrayed. This analysis observes the accuracy of EnSegNet-DNN-TC for 100 images is 4.76% maximized as compared to the
DNN-TC. So, it is concluded that the EnSegNet-DNN-TC can maximize the accuracy for biomedical waste classification with
an increasing amount of images.
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Accuracy (%)

N
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g4
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20 40 &0 g0 100

Number of Irnages

4.5 Error rate

It is calculated as:

Fig 9. Comparison of Accuracy

FP+FN
TP+TN+FP+FN

Error rate =

Error Rate

//

019
018
0.17
0.16
0.15
0.14
0.13
0.12
011

—— DNN-TC
—8— EnSegNet-DNN-TC

20 40 a0 80 100

Number of Irmnages

Fig 10. Comparison of Error Rate

(16)

In Figure 10, the error rate for EnSegNet-DNN-TC and DNN-TC frameworks under a varying numbers of images are
shown. This analysis indicates the error rate of EnSegNet-DNN-TC for 100 images is 24.22% reduced as compared to the
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DNN-TC. Thus, it is observed that the EnSegNet-DNN-TC can minimize the error rate while increasing the number of images
for classifying the biomedical wastes.

4.6 RMSE

It is also a measure of the accuracy of segmentation. It is computed by taking the square root of MSE value as:

1
RMSE = ¢ VL L (i~ Iy)? (17)
i

In Eq. (17), N is the total amount of images, S is the segmented image, A is an actual image and i, j are pixels in the images.

0.54
053 ¢ ¢——0

0.52
7
= 051
o 58 —— DNN-TC

' —B— EnSegNet-DNN-TC
o4 WO E—E— g g

0.48

20 40 60 80 100
Number of Images

Fig 11. Comparison of RME

Figure 11 depicts the RMSE for EnSegNet-DNN-TC and DNN-TC frameworks with the different numbers of images. This
analysis notices the RMSE of EnSegNet-DNN-TC for 100 images is 7.43% minimized as compared to the DNN-TC. So, it is
concluded that the EnSegNet-DNN-TC can reduce the RMSE when the number of images is high for classifying the biomedical
wastage.

5 Conclusion

In this article, an EnSegNet-DNN-TC framework is proposed to increase the accuracy of wastage classification. At first, a SegNet
is designed in which EDN uses max-pooling to upsample the input feature maps. As well, its uncertainty to segment the images
is measured via Bayesian operators. But, it samples a limited amount of pixels. So, an EnSegNet is developed which applies CSS
to sample more pixels in the data-sparse regions and fewer pixels in data-dense regions. Once the segmentation is completed,
the DNN is applied for classifying the wastage. To conclude, the experimental outcomes proved that the EnSegNet-DNN-TC
achieves 83.76% mean accuracy and 0.138 mean error rate compared to the DNN-TC. Though it extracts features sufficiently,
there are subtle variances between different images and misjudgments due to its high complexity. Hence, the future work of this
research work includes the fusion of deep features and texture features to prevent the misjudgments of EnSegNet-DNN-TC
using complex background images.
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