
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 06.03.2021
Accepted: 13.04.2021
Published: 06.05.2021

Citation:Mazzi Y, Gaga A, Errahimi F
(2021) Benchmarking and
Comparison of Two Open-source
RTOSs for Embedded Systems
Based on ARM Cortex-M4 MCU.
Indian Journal of Science and
Technology 14(16): 1261-1273. https
://doi.org/10.17485/IJST/v14i16.387
∗
Corresponding author.

Tel: +212-622-35-1485
yahia.mazzi@usmba.ac.ma

Funding: None

Competing Interests: None

Copyright: © 2021 Mazzi et al. This
is an open access article distributed
under the terms of the Creative
Commons Attribution License, which
permits unrestricted use,
distribution, and reproduction in
any medium, provided the original
author and source are credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Benchmarking and Comparison of Two
Open-source RTOSs for Embedded
Systems Based on ARM Cortex-M4 MCU

Yahia Mazzi1∗, Ahmed Gaga2, Fatima Errahimi1

1 Laboratory of Intelligent Systems, Georesources and Renewable Energies (LISGRE), Sidi
Mohamed Ben Abdellah University Fez, Box 2202 Fez, Morocco. Tel.: +212-622-35-1485
2 Physic department, Sultan Moulay Slimane University Polydisciplinary Faculty of Beni
Mellal, Morocco

Abstract
Objective: To evaluate the performance of two open-source real-time
operating systems (RTOSs), Keil RTX5 and FreeRTOS. Besides, a comparison
between them has been also established based on four timing metrics: task
switching time, pre-emption time, semaphore shuffling time, and inter-task
messaging latency. All the tests have been performed on an STM32F429
discovery board based on Cortex-M4 MCUs.Methods: To measure the timing
metrics, the ARM cycle counter register implemented in the DWT unit was
used. Findings: The DWT cycle counter allows us to capture the number
of cycles that occurred in the execution of a part of the code. Therefore,
the time measurements of the metrics selected show that FreeRTOS has
good performance with the lowest value of switching time, preemption time,
and semaphore shuffling time. Instead, Keil RTX5 has fast message passing.
Novelty: The study provides an evaluation and comparison of the latest
version of the most used open-source RTOSs, Keil RTX5 and FreeRTOS v10.2.0.
Furthermore, the timing metrics have been measured accurately with the ARM
cycle counter register without using any other hardware or GPIO pin that may
disturb the measurement. The comparison is based on four critical timing
metrics that affect mostly the performance of any RTOS and define their time
capability. Finally, the tests have been made on a low-power ARM MCU.
Keywords: realtime operation system; embedded system; FreeRTOS; Keil
RTX5; benchmarking metric; ARM MCU

1 Introduction
From the first modern embedded system “Apollo Guidance Computer” used for the
guidance system of the Apollomission in 1967, until this day, these systems receive high
interest from many industrial domains like automotive, aerospace, telecommunication
devices, and home appliances that satisfy our daily life, work, and gaming demands.
Therefore, this demand imposes adaptability to dynamic operation situations, fast
Time to Market, conformity to the industrial standards, reliability, and safety. Besides,
embedded systems constitute 99 % of all processors manufactured in the world (1).

https://www.indjst.org/ 1261

https://doi.org/10.17485/IJST/v14i16.387
https://doi.org/10.17485/IJST/v14i16.387
https://doi.org/10.17485/IJST/v14i16.387
yahia.mazzi@usmba.ac.ma
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

The growth of sophisticated, low cost and high-performance processors designed for embedded systems (2) offers to
developers a good infrastructure for almost all of their applications. But sometimes with a simple or ever-shorter project, it’s
becoming impossible to control all these devices without the use of advanced software (SW). Conventionally, the embedded
system programs are created using super-loop programming (named also beta-metal or background programming), which
means that all tasks will be run in an infinite loop all the time and will be executed sequentially. Thus, the microcontroller will
stop execution only if there is an interrupt event or power shutting down. But this kind of programming also has a start-up code
to perform the hardware initialize, define the interrupt service routines and exception, initialize the stack pointer and allocate
memory for it, and so on.

Unfortunately, the rise of embedded SW complexity takes more resources such as power consumption (3), (4), memory
usage (5), size, and the number of processors. Consequently, a Real-Time Operating System (RTOS) (6) is a suitable solution
to implement such complex embedded SW and cohere it to the target architecture. As illustrated in Figure 1, the architecture
of the embedded system contains a software layer and hardware layer, including hardware and software components where the
RTOS takes place in the system software layer.

Fig 1. Typical layers of an embedded system

TheRTOS contains two terms, Real-time, and operating system.The first one is the real-time system, it is the system that can
process the inputs and provide the output in a deterministic time, so it must satisfy the physical interaction with the real world
and time requirement of these interactions. Based on this time requirement we can identify two types of RT system: hard-real
time system assures that the critical tasks complete their execution on time. However, the critical real-time task in the soft-real
time gets priority over other tasks and retains this priority until it completes. For both systems, the delay between the recovery
of the stored data to the time that the operating system takes to finish the request made for it must be bounded.

The second is the Operation System (OS), which is simply defined as a software program that interfaces the user and the
hardware components of the computer.Windows, Linux,Unix are examples of the operating system inwhich they operate under
the general-purpose operation system (GPOS), those systems cannot be run on small microcontrollers due to their resource
requirements and the use of virtual memory.

A real-time operating system (RTOS) is a part of the software with a set of APIs for users to develop their applications,
where the actions are divided into separate threads or tasks. It has the job like any OS, it’s responsible for hardware resource
management, scheduling program applications, memory management, etc. However, when this OS must handle numerous
events and ensure that the response to these events is within a finite and strict time (or timing requirements), we called it an
RTOS. In addition to the wide variety of services they offer such as scheduling, I/O operations, and communication between
processes, these systems efficiently manage the power consumption of the whole embedded system (7).

https://www.indjst.org/ 1262

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Several RTOSs are existing nowadays, divided into commercial, open-source, and proprietary RTOSs, and available for
high-performance microcontrollers (8) and small microcontrollers (9), (10). Examples of RTOS include FreeRTOS, RTX, OSEK,
VxWorks, µC/OS-II, µC/OS-III, LynxOS, MbedOS, RT-thread, Nucleus, etc. Furthermore, these RTOSs are implemented in
small microcontrollers and widely used in several domains such as automotive (11–13), Avionic (14), mobile, and the internet of
things (IoT) (15,16), and robotic (17).

To develop a multitasking application, RTOSs offers several services and features such as the task priority to provide to each
task an individual level of priority, so the RTOS can identify which task must enter in the running state. The selection of this
task, with the higher priority, is achieved by task management service, constituted of two fundamentals types of scheduling:
pre-emptive and non-preemptive. In pre-emptive scheduling, the running task can be pre-empted by a higher priority task
that becomes in the ready state. The use of the stack and interrupt management is very important in this case, to ensure the
correctness of the context switching since the pre-emption can occur at any time. Thus, when the task resumes its execution,
the stack values are restored. Contrarily, in the non-preemptive (or cooperative) scheduling all tasks cooperate to execute the
context switching, clearly saying, the running task voluntarily quit the CPU. Even though the non-preemptive scheduling policy
is simple, it is less used in common RTOS scheduling because it cannot always meet the time deterministic nature. Therefore,
pre-emptive scheduling is the most used in RTOS since it gives a short time response for critical actions.

Some other services offered by RTOS is inter-task communication and synchronization mechanisms such as mutexes,
semaphores, message queues, mailboxes, signal events, etc.

Before selecting a specific RTOS for an application, several criteria must be taken into account such as predictability, the
Worst-case Response Time (WCRT) (18), the response time of a task to an external/internal event, the inter-task communication,
the response to an interrupt service routine, and the synchronizationmechanism, etc. In this paper, we aim tomeasure, compare,
and analyze the timing of some of those criteria for two open-source RTOSs: FreeRTOS and Keil RTX5. All the benchmarking
tests have been established on a small microcontroller ARM Cortex®-M4 based MCU.

Thepaper contributeswith a new result of the timing comparison of twoof themost open-sourceRTOSs (19) used on the small
microcontroller. Moreover, the test codes have been run on an actual MCU (STM32F429 discovery board based on an ARM
Cortex®-M4MCU).The test includes fourmicro-benchmarking parameters: task switching time, pre-emption time, semaphore
shuffling time, and the inter-task messaging latency. Compared to other works, where an oscilloscope is used to perform the
time measurements on a GPIO (General-purpose Input/Output) Pin selected from the board, the time measuring in this paper
is done by the Cycle Counter feature implemented on the ARM Cortex-M4 MCU in the DWT (Data Watchpoint & trace) unit.
Additionally, we select the deterministic Keil RTX5 RTOS based on the new version of CMSIS-RTOS API (CMSIS-RTOS v2)
and the new version of FreeRTOS (version 10.2.0).

This paper is organized as follows: section 2 represents a general insight into the real-time operation system, Section 3
provides some related works and the purpose of our work. Following this, Section 4 defines the performance metrics, which
will be measured, and the experimental setup. Experimental results and discussions of the benchmark results are drawn in
Section 5. The paper finishes with a conclusion in Section 6.

2 Real-Time Operating System
Every RTOS has a Kernel, which is the supervisor core software that provides protection, scheduling, resources management,
and other services; it also combines several modules, as shown in Figure 2, including protocol networks, system files, and other
devices. The RTOS execution refers to multiple tasks sharing a processor (i.e., multitasking), performed with a set of APIs.

Before giving some details about the RTOSs selected for the benchmarking test and comparison, let’s take a look into some
related statistics done in 2019 by the EmbeddedMarket study (19)about the use of RTOS for the current and the ongoing projects.
The availability of source codes and the cost of the RTOS software is one of the biggest factors in deciding whether to use it
in an embedded application, as the study shows that 42% of programmers use an open-source RTOS without any commercial
support. The reason for this choice, according to the study, is that the open-source with current solutions works fine for them,
and the commercial alternatives are too expensive. For the persons who choose the commercial OS, the real-time capability is
the most influential feature of their choice.

For the RTOS selected in this paper, 19% of programmers use FreeRTOS, and 4% use Keil RTX. These numbers will increase
for the ongoing projects to 27% and 6% respectively.

https://www.indjst.org/ 1263

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Fig 2. Typical RTOS architecture

2.1 FreeRTOS

FreeRTOS (20) is a fully open-source RTOS distributed under free MIT licensing. Available for over 15 years and now it is the
leader in the market of RTOS (19) for the microcontroller and small microprocessors.

FreeRTOS supports more than 40 MCU architectures and more than 15 toolchains, including the newest RISC-V (21) and
ARMv8-M (Martin, 2016) (22). In addition to its simple and easy use, it provides an official demo project for each new MCU
architecture, which can be downloaded from the FreeRTOS website.

2.2 Keil RTX5

Designed for ARM and Cortex architecture, the version 5 Keil RTX (RTX5) (23) based on CMSIS-RTOS v2 APIs allows
embedded system developers to create a powerful application, well-structured with multiple functions, and easy to maintain. It
comes with a free royalty license. The CMSIS2 package for Keil MDK includes the RTX5 Kernel accompanying with necessary
file and library.

This advanced RTOS provides various benefits, such as memory management, Interrupt Service Routine (ISR) system
management, many kinds of inter-task communications. Additionally, The RTX5 Kernel scheduler supports cooperative,
round-robin, and the famous pre-emptive multitasking policies.

2.3 The main characteristics of RTX and FreeRTOS

Table 1 presents a general insight into the main characteristics and differences between Keil RTX5 and FreeRTOS.

https://www.indjst.org/ 1264

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Table 1.The main characteristics of Keil RTX5 and FreeRTOS
Parameters Keil RTX5 FreeRTOS
OS family RTOS RTOS
Architectures supported ARM Cortex-M MCU based devices ARM, Cortus, RISC-V, PIC, AVR, Renesas, x86,

Infineon, …
Scheduling policies Pre-emptive, round-robin, cooperative Pre-emptive and cooperative
Synchronization and resources
management

Semaphores, Mutexes Semaphores (binary & counting), Mutexes

Memory allocation for Objects • Global Memory Pool
• Object-specific Memory Pool
• Static Object Memory

Automatic or Manual Dynamic Allocation from
RTOS heap.

Interrupt • Interrupt not disabled
• Low interrupt latency

Subscription mechanism to handle interrupt sub-
routines

Inter-task communication Signal events,MessageQueue,Memory Pool,
Mail Queue

Message Queue

Source model Open-source Open-source

3 Related work

Besides the statistical study done by “EETimes and Embedded.com” (19) in 2019 that reflects the audience’s usage of the real-
time operating system on their embedded system projects, there are also several pieces of research and studies for the RTOSs,
including their portability on small microcontrollers, timing evaluations and comparison based on some metrics parameters.

By using the verification systemHip/Sleek, the authors (24) present the process used to automatically verify thememory safety
and functional correctness of the task scheduler component of the FreeRTOS Kernel. Furthermore, In (25), Xing et al. give the
process to build an embedded system based on FreeRTOS on a Cortex-M3 MCU. The paper demonstrates also that the porting
method is feasible and reasonable by doing several tests. Likewise, the authors in (26) propose a real-time robot operating system
based on FreeRTOS combined with a publisher/subscriber communication mechanism in ROS (Robot Operating System).
Another qualitative and quantitative comparison is done in (27) between FreeRTOSV8.0.0 and µC/OS-III.The results illustrated
in Table 2 show that µC/OS-III becomes somewhat unpredictable due to the latency of the tick interrupt and FreeRTOS is stable
in some metrics. In brief, µC/OS-III slightly outperforms FreeRTOS in most of the measured metrics.

Table 2. Comparison of FreeRTOS and µC/OS-III (27)

Metrics
RTOS

Mutex acquisition
time (µs)

Mutex release
time (µs)

Average Interrupt
Latency

Max Semaphore acquire
Time (µs)

Max Semaphore
release time (µs)

FreeRTOS
V8.0.0

25.7 27.4 0.9 65 34

µC/OS-III 53.6 37.3 1.00 20 24

The analyzed results of the study done by (28) show that there is no performance penalty of CMSIS-RTOS when it is designed
to follow the standard APIs. So, the authors propose to use an adaptation layer for the X real-time kernel, which can impose a
significant performance if the type of services of the kernel is different.

In (29), the authors compare the time switch context between a low priority task and a high priority task for four RTOSs
(FreeRTOS, Keil RTX, µC/OS-II, RT-Thread).The results of the experimental tests performed onARMCortex®-M0+ andARM
Cortex®-M4 based MCUs show that FreeRTOS has the largest context switching time, compared to Keil RTX which has the best
performances. The same authors add FreeRTOS version 10.2.0 and the µC/OS-III RTOS to the experiment in (30) and extend it
to measure and compare the performance achieved by those six RTOS for the send/receive latencies of an event, mailbox, and
semaphore as shown in Table 3. Additionally, they also measure the time for task switching from a high priority task to a low
priority task.The results of the experiment show that µC/OS-III, Keil RTX, and RT-Thread have the best performance, contrary
to FreeRTOS which has a low performance even though it is the most open-source RTOS used in embedded applications.

https://www.indjst.org/ 1265

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Table 3. A recapitulation of the results of (30)

Metrics (µs) RTOS
FreeRTOS
9.0.0

FreeRTOS
10.2.0

RT-thread Keil RTX
V4.82.0

µC/OS-III µC/OS-III

CortexTM-
M0+

CortexTM-
M4

CortexTM-
M0+

CortexTM-
M4

CortexTM-
M0+

CortexTM-
M4

CortexTM-
M0+

CortexTM-
M4

CortexTM-
M0+

CortexTM-
M4

CortexTM-
M0+

CortexTM-
M4

Tot
event 23.56 4.13 23.33 3.97 22.8 3.88 16 3.26 19.04 3.66 26.11 5.56
Semaphore 24.86 5.26 25.06 5.05 19.29 2.76 15.43 3.03 18.77 3.41 23.77 5.26
mailbox 20.12 3.65 19.05 3.07 24.79 4.43 17.41 3.57 19.33 3.57 24.60 5.38

Tot1
Event 25.43 4.72 24.78 4.99 29.88 5.46 28.75 3.50 16.6 3.25 25.23 5.26
Semaphore 41.69 7.78 41.23 7.80 28.48 4.93 19.10 3.42 15.41 2.87 22.16 4.79
Mailbox 19.73 3.56 19.35 3.08 29.72 5.36 19.95 3.47 15.38 2.91 24.01 5.21

Tet
Event 8.70 1.82 8.70 1.75 4.34 0.90 8.38 1.60 5.65 1.1 5.32 1.02
Semaphore 8.67 2.16 8.81 2.09 3.68 0.66 7.44 1.33 4.09 0.69 4.88 0.86
Mailbox 6.50 1.37 6.48 1.27 6.56 1.16 10.04 1.73 4.02 0.67 8.77 1.61

Tet1
Event 10.61 2.39 10.61 2.23 5.87 1.19 8.98 1.79 6.31 1.13 6.69 1.27
Semaphore 6.25 1.41 7.85 1.81 3.68 0.68 8.45 1.43 4.93 0.9 4.34 0.83
Mailbox 7.70 1.7 7.63 1.55 6.18 1.21 10.49 1.94 5.03 0.96 7.48 1.45

Tot -Time of task context switch from lower priority task to higher priority task is triggered by
Tot1 - Time of task context switch from higher priority task to lower priority task is triggered by
Tet - The execution time for primitive that signal
Tet1 - The execution time for primitive that sent

In this study, we focused just on two types of RTOS: FreeRTOS 10.2.0 and Keil RTX5. Both RTOS selected are free Royalty
open-source RTOS. RTX5 is integrated into the Keil MDK-ARM software tools, and FreeRTOS is the most used RTOS in the
embedded applications based on a small microcontroller. The selection of these RTOSs refers to their top use for the embedded
projects based on small microcontrollers such as ARM Cortex®-Mx MCUs. The efficiency of these MCUs is proved by the great
applications built by them, such as in data acquisition and controlling system with an embedded web server for industrial
monitoring (31) using Keil RTX and TCP/IP Ethernet running on an ARM Cortex®-M3 MCU. Likewise, in (32) a power well
covers monitoring system (PWC-MS) was implemented in an ARM Cortex®-M3 microcontroller with FreeRTOS and NB-IoT
technology. Those are just some examples from a lot of applications based on FreeRTOS and Keil RTX, where they reflect their
capability to manage a real-time system efficiently.

4 Performance Metrics and Experimental setup
For a specific embedded application, with a particular system requirement, some parameters are most important and others
are insignificant. Hence, the benchmarking tool comes to solve this issue and offers to designers a method to evaluate and
compare multitasking RTOSs and help them choose the appropriate RTOS for their applications. In this section of the paper,
we will describe the experimental setup and explain all the tests done for the benchmarking evaluation, based on the timing
measurement. So, in this work we will focus on four micro-benchmarking parameters: task switching time, pre-emption time,
semaphore shuffling time, and the inter-task Messaging latency.

4.1 Performance metrics

To measure the timing performance of the RTOS selected, four metrics have been defined for the benchmarking test.

4.1.1 Task Switching Time
It is the average time the kernel takes to switch from one task to another with the same priority. The tasks mustn’t be suspended
or in sleepingmode.Thismetric is essential to assess the efficiencywith which the kernelmanages the data structure in restoring
and saving contexts. Figure 3 demonstrates this performance parameter. The two tasks created for this metric have the same
priority and switch the CPU between them in every iteration. The task switching time measured will be used to determine the
specific time for the other metric that uses the task switch.

https://www.indjst.org/ 1266

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Fig 3. Task switching time

4.1.2 Preemption Time
The preemption time is the average time that takes a higher priority task (HPT) to take the CPU from a lower priority task
(LPT) currently running on the CPU. This preemption usually occurs when the HPT responds to an external event and switch
from the suspended or the blocked state to the ready state. By way of explanation, it is the average time that the kernel takes to
switch control from a running LPT to the HPT activated by an external event. Tomeasure this time, two tasks were created with
different priorities. First, the HPT runs and suspends itself, and then the LPT switches to the running state and resumes the
execution of the HPT. The process is repeated for the defined iterations. A demonstration of the pre-emption time is illustrated
in Figure 4.

Fig 4. Preemption time

4.1.3 Semaphore Shuffling Time
The time elapsed between a task’s release of a semaphore and the activation of another blocked task waiting for this semaphore
is called semaphore shuffling time, it measures the overhead related to the mutual exclusion. This parameter gives the time that
the kernel spends to provide a non-sharable resource from one task to another. The two tasks used for this metric have the same
priority and pass the semaphore between them for a specified number of iterations. From the final time gotten, we subtract the
time needed for task switching in order to only get the net semaphore shuffling time. Figure 5 demonstrates this performance
metric.

Fig 5. Semaphore shuffling

https://www.indjst.org/ 1267

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

4.1.4 Inter-task Messaging Latency
The Inter-task Messaging Latency is the time elapsed between sending and receiving a nonzero-length message from one task
to another. The receiving task should be suspended while waiting for the message and the sending task should stop execution
after sending it, in order to properly measure this latency. Supposing that multiple messages are sent to the same receiving task,
in this case, the multitasking kernel provides other alternatives such as queues and pipes, so the receiving task can read an old
message before overwriting it by the sending task with a new one.

In Figure 6, we demonstrate this parameter. The LPT stays blocked until it receives a message queue from the HPT and gets
the CPU, it turns blocked again when trying to receive another message. This process is also repeated for a specified number of
iterations.

Fig 6. inter-task communication

4.2 Timing measurement process

One of many ways to measure the execution time of a part of code is using an oscilloscope and GPIOs pin. However, an amount
of setup must be done before going through the measurement such as find free GPIO pins and configure them as outputs which
cannot be possible in some applications where the number of pins is limited. Additionally, the measurement may be affected
by some errors. To overtakes the aforementioned limitations, the DWT cycle counter is selected for time measurement. Where
the number of CPU cycles can be captured easily and converted to milliseconds.

For all the benchmarkingmetricsmeasured in this paper, we use the same process to develop the application code.We create
two tasks, where the priorities depend on the parameter to measure. And to ensure an accurate measure, the tasks switch back
and forth for 50000 iterations, so first, we determine the time needed to perform the for loops as illustrated in Figure 7 (with no
work & without task switching). Then, we subtract this time from the total measured time and divide the result by the number
of iterations in order to only get the time to perform the benchmark metric.

Fig 7.Number of cycles measurement for empty For loops

The figure (Figure 8) illustrates a bloc synopsis of the process to get the execution time of a portion of the code. We select
to use a software measurement for the benchmark metrics included in the hardware platform facilities. Besides the RTOS Tick
Timer used by the Kernel, we use the DWT cycle counter unit for the timing measurements (chapter 9 of (33)). The value of
the other timers increases when an interrupt is issued, so if the program enters in a portion of code with interrupts disabled,
the timing measurement will be delayed, thus choosing the DWT cycle counter solves the problem. By using this counter, and
running the program in debugging mode, we can capture the number of cycles at the beginning (T1) and in the end (T2) of

https://www.indjst.org/ 1268

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

the code to measure. The value of T1 and T2 are displayed in the MDK-ARM debug window. The total number of cycles equals
T2-T1, then we divide this number by the clock frequency (80 MHz in our case) to get the time in µs.

Fig 8. Execution time measurement of a portion of code using DWT cycle counter

Assuming that △1 = T 4 − T 3 is the number of cycles needed to perform empty for loops with 50000 iterations, and
△2 = T 2−T 1 is the number of cycles to perform 50000 iterations of task switching, preemption, semaphore passing, or inter-
task messaging. Then, we calculate the value of △2value for each metric. The final number of cycles which correspond to the
number of one iteration is equaled to:

N =
△2 −△1

50000
(1)

Hence, the time of benchmark metrics is defined in microseconds (µs) as bellow:

Time (µs) =
number o f cycles
f requency (MHz)

=
N
80

(2)

4.3 Software/Hardware Configuration

The configuration of our project includes the kernel and board configuration, such as memory initialization, stack size
initialization, output and input configuration, and so on.

The target hardware used to perform the benchmarking tests is a STM32F429ZIT6 Discovery board (34) Based on a 32-bit
Cortex-M4 core (35) in an LQFP144 package with 2 Mbytes of Flash memory, 256 Kbytes of RAM, 180 MHz maximum system
clock frequency, and an on-board ST-Link/V2-B. A code for each benchmarkmetric has been developed for each RTOS selected
(FreeRTOS and RTX5) in the Keil uVision5 v5.29 under the same conditions in the same hardware platform. To take the value
of the cycles counted by the DWT unit, the codes will be run and executed on debugging mode in order. The system speed
frequency is configured at 80 MHz (PLL activated with the high-speed external clock of 8 MHz).

In the program software, we configured static priority-based scheduling for multitasking mechanism for both FreeRTOS
and Keil RTX5 RTOSs, and a tick rate of 1000 Hz to generate a tick interrupt every 1ms, which makes a good balance between
the overhead of the task switching and task speed. For FreeRTOS we used timer 6 to generate this RTOS kernel tick. As well,
for Keil RTX5, the unified System Tick Timer (SysTick Timer) has been used. To put all the tests on the same conditions, we
have used a minimum stack size of 512 Bytes for each task.

5 Experimental results and discussion
In this section, the results of the bench marking tests discussed in the previous sections will be presented and discussed.

The comparison of FreeRTOS and RTX5 has been done based on four parameters: task switching time, pre-emption time,
Inter-taskmessaging latency, and semaphore shuffling time. For each parameter, wemeasure the total cycle for several iterations
(ex: 50000) and calculate the time taken to perform one iteration. The cycle counter used gives us the number of cycles needed
to establish a part of the code and displays it in the debugging window of uVision5 ARM-MDK as shown in Figure 9.

https://www.indjst.org/ 1269

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Fig 9. debugging window with the number of cycles captured

The results of the time measurement for each RTOSs in microseconds are illustrated in Figures 10, 11, 12 and 13. Table 4
shows the number of cycles of each benchmark parameter for both FreeRTOS and Keil RTX5.

Table 4. the number of cycles of each benchmark parameters for both FreeRTOS and Keil RTX5
RTOS Metrics Task switching

time
Preemption time Semaphore shuf-

fling time
Inter-task messaging
latency

FreeRTOS
For 50000 iterations 6980810 18136803 14437209 76826808
For one iteration 139.616 362.736 288.744 1536.536

Keil RTX5
For 50000 iterations 14106402 18609605 65959600 18051611
For one iteration 282.128 372.192 1319.192 361.032

Fig 10.Measured task switching time

https://www.indjst.org/ 1270

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Fig 11.Measured preemption time

Fig 12.Measured inter-task messaging latency

Fig 13.Measured semaphore shuffling time

https://www.indjst.org/ 1271

https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

Analyzing the results, we see that the slow task switching (Figure 10 ) is presented by RTX5. For the preemption time
(Figure 11 ), both RTOSs have approximately the same value. Therefore, FreeRTOS has a great capability to switch between
tasks in both cases; if they have the same priority or different priorities. FreeRTOS also has good performance in managing
shared resources with semaphore with a semaphore shuffling time (Figure 13 ) of 3.6093 µs, contrarily to the large value of
RTX5 which equal to 16.4899 µs. For the message passing (Figure 12 ), the RTX5 RTOS handles it in a short time with an
inter-task messaging latency of 4.5129 µs. On the other hand, FreeRTOS has a value of 19.2067 µs.

6 Conclusion
This study presents a short overview of RTOSs, their features, and fundamentals. It gives further some description of the RTOSs
selected here, which are Keil RTX5 and FreeRTOS. A general insight into themain characteristics and differences between them
have been given. Before starting our implementation of the benchmarking tests, we gave the important experimental setups and
a definition of the performance metrics that will be measured. The tests have been performed in an STM32F429ZI discovery
board based on ARM Cortex®-M4 MCU. The task switching time, pre-emption time, semaphore shuffling time, and inter-task
messaging metrics have been measured using the DWT cycle counter unit of the ARM Cortex®-M4. RTX5 is an open-source
RTOS very optimized so we have expected that it will give us powerful results against FreeRTOS, but the results obtained show
that FreeRTOS is fast in preemption and switching between tasks and reacts rapidly to unblock a task waiting for a semaphore.
Concerning RTX5 RTOS, it has good communication and message passing time. This study contributes with a new evaluation
and benchmarking results of the most used open-source RTOSs (FreeRTOS and Keil RTX5) based on four metrics, reflecting
the main timing performances of a real-time operating system. The time measurement is done with the DWT cycle counter
that gives an accurate time value, contrarily to the oscilloscope.

This study may represent a time indicator to help programmers on choosing a suitable RTOS to use, but we must also look
into other principles, such as memory footprint, deadlock break time, interrupt latency, and licensing, as the goal for our next
works, in which the MCU used in this study and other MCUs, will be evaluated for the performances when the embedded
architecture changes.

References
1) EETimes. EETimes - Embedded Processors by the Numbers. 1999. Available from: https://www.eetimes.com/embedded-processors-by-the-numbers.
2) Guessi M, Nakagawa EY, Oquendo F, Maldonado JC. Architectural description of embedded systems: a systematic review. In: Proceedings of the 3rd

international ACM SIGSOFT symposium on Architecting Critical Systems. 2012;p. 31–40. doi:10.1145/2304656.2304661.
3) Jheng GC, Duh DR, Lai CN. Real-time reconfigurable cache for low-power embedded systems. International Journal of Embedded Systems.

2010;4(3/4):235–247. Available from: https://dx.doi.org/10.1504/ijes.2010.039027.
4) Tan TK, Raghunathan A, Jha NK. Energy macromodeling of embedded operating systems. ACM Transactions on Embedded Computing Systems.

2005;4(1):231–254. Available from: https://dx.doi.org/10.1145/1053271.1053281.
5) Oliveira L, Mattos JCB, Brisolara L. Survey of Memory Optimization Techniques for Embedded Systems. 2013 III Brazilian Symposium on Computing

Systems Engineering. 2013;p. 65–70. doi:10.1109/SBESC.2013.35.
6) ShuklaAK, SharmaR,Muhuri PK. AReview of the Scopes andChallenges of theModernReal-TimeOperating Systems. International Journal of Embedded

and Real-Time Communication Systems. 2018;9(1):66–82. Available from: https://dx.doi.org/10.4018/ijertcs.2018010104.
7) Fei Y, Ravi S, RaghunathanA, JhaNK. Energy-optimizing source code transformations for operating system-driven embedded software. ACMTransactions

on Embedded Computing Systems. 2007;7(1):1–26. Available from: https://dx.doi.org/10.1145/1324969.1324971.
8) Kouty SY, Mishra S. Virtual Integration in Avionics Systems-RTOS. INCOSE International Symposium. 2019;29(S1):180–193. Available from: https:

//dx.doi.org/10.1002/j.2334-5837.2019.00678.x.
9) Tan S, AnhTNB. Real-time operating system (RTOS) for small (16-bit)microcontroller. 2009 IEEE 13th International Symposium onConsumer Electronics.

2009;p. 1007–1011. doi:10.1109/ISCE.2009.5156833.
10) Atmadja W, Liawatimena S, Lukas J, Nata EPL, Alexander I. Hydroponic system design with real time OS based on ARM Cortex-M microcontroller. IOP

Conference Series: Earth and Environmental Science. 2017;109(1):012017. Available from: https://dx.doi.org/10.1088/1755-1315/109/1/012017.
11) ChoiY. Model checkingTrampolineOS: a case study on safety analysis for automotive software. SoftwareTesting, Verification andReliability. 2014;24(1):38–

60. Available from: https://doi.org/10.1002/stvr.1482.
12) ZHANG H, AOKI T, CHIBA Y. Verifying OSEK/VDX Applications: A Sequentialization-Based Model Checking Approach. IEICE Transactions on

Information and Systems. 2015;98(10):1765–1776. Available from: https://dx.doi.org/10.1587/transinf.2015edp7043.
13) Dietrich C, Hoffmann M, Lohmann D. Global Optimization of Fixed-Priority Real-Time Systems by RTOS-Aware Control-Flow Analysis. ACM

Transactions on Embedded Computing Systems. 2017;16(2):1–35. Available from: https://dx.doi.org/10.1145/2950053.
14) Baldovin A, Graziano A, Mezzetti E, Vardanega T. Kernel-level time composability for avionics applications. In: Proceedings of the 28th Annual ACM

Symposium on Applied Computing. 2013;p. 1552–1554. doi:10.1145/2480362.2480651.
15) Klingensmith N, Banerjee S. Hermes: A Real TimeHypervisor forMobile and IoT Systems. In: Proceedings of the 19th InternationalWorkshop onMobile

Computing Systems & Applications. 2018;p. 101–106. doi:10.1145/3177102.3177103.
16) Belleza RR, Freitas EPD. Performance study of real-time operating systems for internet of things devices. IET Software. 2018;12(3):176–182.
17) Yu C, Ma X, Fang F, Qian K, Yao S, Zou Y. Design of controller system for industrial robot based on RTOS Xenomai. 2017 12th IEEE Conference on

Industrial Electronics and Applications (ICIEA). 2017;p. 221–226. doi:10.1109/ICIEA.2017.8282846.

https://www.indjst.org/ 1272

https://www.eetimes.com/embedded-processors-by-the-numbers
http://dx.doi.org/10.1145/2304656.2304661
https://dx.doi.org/10.1504/ijes.2010.039027
https://dx.doi.org/10.1145/1053271.1053281
http://dx.doi.org/10.1109/SBESC.2013.35
https://dx.doi.org/10.4018/ijertcs.2018010104
https://dx.doi.org/10.1145/1324969.1324971
https://dx.doi.org/10.1002/j.2334-5837.2019.00678.x
https://dx.doi.org/10.1002/j.2334-5837.2019.00678.x
http://dx.doi.org/10.1109/ISCE.2009.5156833
https://dx.doi.org/10.1088/1755-1315/109/1/012017
https://doi.org/10.1002/stvr.1482
https://dx.doi.org/10.1587/transinf.2015edp7043
https://dx.doi.org/10.1145/2950053
http://dx.doi.org/10.1145/2480362.2480651
http://dx.doi.org/10.1145/3177102.3177103
http://dx.doi.org/10.1109/ICIEA.2017.8282846
https://www.indjst.org/


Mazzi et al. / Indian Journal of Science and Technology 2021;14(16):1261–1273

18) Murikipudi A, Prakash V, Vigneswaran T. Performance Analysis of Real Time Operating System with General Purpose Operating System for Mobile
Robotic System. Indian Journal of Science and Technology. 2015;8(19):1–6. Available from: https://dx.doi.org/10.17485/ijst/2015/v8i19/77017.

19) Evanczuk S. 2019 Embedded Markets Study reflects emerging technologies, continued C/C++ dominance. 2019. Available from: https://www.embedded.
com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance.

20) FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded systems with Internet of Things extensions. FreeRTOS/indexhtml. 2021.
21) ‘FreeRTOS for RISC-V RV32 and RV64’. 2021. Available from: FreeRTOS./Using-FreeRTOS-on-RISC-V.html.
22) Martin T. ARMv8-M. In: Martin T, editor. The Designer’s Guide to the Cortex-M Processor Family. 2016;p. 445–455.
23) ‘RTX v5 Implementation’. 2021. Available from: https://arm-software.github.io/CMSIS_5/RTOS2/html/rtx5_impl.html.
24) Ferreira JF, He G, Qin S. Automated Verification of the FreeRTOS Scheduler in HIP/SLEEK. 2012 Sixth International Symposium on Theoretical Aspects

of Software Engineering. 2012;p. 51–58. doi:10.1109/TASE.2012.45.
25) Xing Y, Wang D, Zhao Y. Analysis and Implementation of an Embedded System Platform Based on FreeRTOS and Cortex-M3. In: Proceedings of the

2017 2nd International Conference on Communication and Information Systems. 2017;p. 350–354. doi:10.1145/3158233.3159350.
26) Shao L, Wang C, Chu C, Song Y, Hu H, Yang Y, et al. Design and implementation of real-time robot operating system based on freertos. J Phys: Conf Ser.

2020;1449:12115. doi:10.1088/1742-6596/1449/1/012115.
27) Peng L, Guan F, Perneel L, TimmermanM. Behaviour and performance comparison between FreeRTOS and µC/OS-III. International Journal of Embedded

Systems. 2016;8(4):300. Available from: https://dx.doi.org/10.1504/ijes.2016.077774.
28) Renaux DPB, Pöttker F. Performance evaluation of CMSIS-RTOS: benchmarks and comparison. International Journal of Embedded Systems. 2016;8(5-

6):452–463. doi:10.1504/IJES.2016.080389.
29) Ungurean I, Gaitan NC. Performance analysis of tasks synchronization for real time operating systems. 2018 International Conference on Development

and Application Systems (DAS). 2018;p. 63–66. doi:10.1109/DAAS.2018.8396072.
30) Ungurean I. Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers. Symmetry. 2020;12(4):592. Available from:

https://dx.doi.org/10.3390/sym12040592.
31) Yogaraj A, Sivanthiram CS, Dhananjeyan S, Suresh S. Keil Rtos Based Embedded Web Server For Real Time Industrial Monitoring. International Journal

of Mechanical Engineering and Technology. 2017;8(10):553–560. Available from: https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_
8_ISSUE_10/IJMET_08_10_062.pdf.

32) Wang W, Xie T, Hu X. Design of power well cover wireless monitoring system based on freeRTOS and NB-IoT technology. IOP Conf Ser: Mater Sci Eng.
2020;853:12038. doi:10.1088/1757-899X/853/1/012038.

33) Arm Cortex-M4 Processor Technical Reference Manual Revision r0p1. 2021. Available from: https://developer.arm.com/documentation/100166/0001/
?search=5eec6e71e24a5e02d07b259a.

34) 32F429IDISCOVERY - Discovery kit with STM32F429ZI MCU. 2021. Available from: https://www.st.com/en/evaluation-tools/32f429idiscovery.html.
35) Cortex-M4. 2021. Available from: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4.

https://www.indjst.org/ 1273

https://dx.doi.org/10.17485/ijst/2015/v8i19/77017
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance
FreeRTOS. /Using-FreeRTOS-on-RISC-V.html
https://arm-software.github.io/CMSIS_5/RTOS2/html/rtx5_impl.html
http://dx.doi.org/10.1109/TASE.2012.45
http://dx.doi.org/10.1145/3158233.3159350
http://dx.doi.org/10.1088/1742-6596/1449/1/012115
https://dx.doi.org/10.1504/ijes.2016.077774
http://dx.doi.org/10.1504/IJES.2016.080389
http://dx.doi.org/10.1109/DAAS.2018.8396072
https://dx.doi.org/10.3390/sym12040592
https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_8_ISSUE_10/IJMET_08_10_062.pdf
https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_8_ISSUE_10/IJMET_08_10_062.pdf
http://dx.doi.org/10.1088/1757-899X/853/1/012038
https://developer.arm.com/documentation/100166/0001/?search=5eec6e71e24a5e02d07b259a
https://developer.arm.com/documentation/100166/0001/?search=5eec6e71e24a5e02d07b259a
https://www.st.com/en/evaluation-tools/32f429idiscovery.html
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www.indjst.org/

	Introduction
	Real-Time Operating System
	2.1 FreeRTOS
	2.2 Keil RTX5
	2.3 The main characteristics of RTX and FreeRTOS

	Related work
	Performance Metrics and Experimental setup
	4.1 Performance metrics
	4.1.1 Task Switching Time
	4.1.2 Preemption Time
	4.1.3 Semaphore Shuffling Time
	4.1.4 Inter-task Messaging Latency

	4.2 Timing measurement process
	4.3 Software/Hardware Configuration

	Experimental results and discussion
	Conclusion

