
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 04.06.2020
Accepted: 26.04.2021
Published: 15.05.2021

Citation: Singla N, Kalra S (2021) A
two-dimensional Multiserver
Queuing system with repeated
attempts and impatience. Indian
Journal of Science and Technology
14(17): 1379-1391. https://doi.org/
10.17485/IJST/v14i17.820
∗
Corresponding author.

soniakalra276@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2021 Singla & Kalra.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

A two-dimensional Multiserver Queuing
system with repeated attempts and
impatience

Neelam Singla1, Sonia Kalra2∗

1 Assistant Professor, Department of Statistics, Punjabi University, Patiala, 147001, India
2 Research Scholar, Department of Statistics, Punjabi University, Patiala, 147001, India

Abstract
Objective: This study discusses a two-state multiserver retrial queueing
system, where the customer may leave the system due to impatience. In this
paper, we deal with the time dependent probabilities when all, some or none
servers are busy. Method: For this model, we solved difference differential
equations recursively and obtained the time dependent probabilities when all,
some or none servers are busy. Findings: Time dependent probabilities of
exact number of arrivals and exact number of departures at when all, some or
none servers are busy are obtained. In this paper, some kind of verification and
converting two statemodel into single statemodel are discussed. Some special
cases of interest are also discussed. Novelty: In communication networks,
multiple servers are used to reduce traffic congestion and improve system
performance. The operation mode of a call center with repeated attempts
provides an initial motivation for our study.

Keywords: Impatience; Multiserver; Probability; Queueing; Retrial

1 Introduction
Retrial queueing models serve as the quantitative technique in evaluating the operating
performance of call centers. Retrial queues (queueing systemswith repeated attempts, or
queues with returning customers) are characterized by the following feature: a request
on finding all servers busy upon arrival leaves the service area, but repeats his demand
after some (random) time. For example, if the control tower can not accept request for
landing from an aircraft, then later has to circle in the sky.The aircraft repeats its request
until the runway is available to it for landing. Retrial queues are widely and successfully
used as mathematical models for several computer systems and telecommunication
networks. For a comprehensive review of the main results and literature relating to
retrials, the reader is referred to the papers Artalejo (1), Falin (2), Kulkarni & Liang (3),
Yang & Templeton (4).

In communication networks, multiple servers are used to reduce traffic congestion
and improve system performance. The operation mode of a call center with repeated
attempts provides an initial motivation for our study. In a queueing model of a call
center, the customers are callers, the servers are telephone agents (operators), and
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queues are populated by callers that wait for service. The operation of the call center can be described as follows: when a
customer call arrives, it will be served immediately if a server is available. If all servers are busy with other calls, the customer
makes repeated attempts until the connection is made. The call center may choose to announce an expected waiting time
to the customer at this point. Some customers are patient enough to wait for a server to become available. Other customers
will hang up immediately upon hearing the waiting time announcement or abandon after waiting for some time. However,
multiserver queues with impatience, have attracted much attention in queueing literature because of explosive demands to
efficiently design and manage call centers. Therefore, in this paper, we present a multiserver queueing model with customer’s
retrials and impatience.

The problem of queues with impatient customers was first analyzed by Palm (5). Motivated by the impact of impatience and
repeated calls in the conventional systems, Cohen (6) studied a multiserver queue with retrial pool and no waiting positions.
Baccelli et al. (7) studied the waiting time distribution in M/M/c queue with general impatience bound on queueing times by
constructing a simpleMarkov process. Perel and Yechiali (8) considered a two-phase servicemodel where the customers become
impatient. Choudhary and Medhi (9) studied a multiserver queueing model with reneging and balking where the reneging rate
is not constant

The classical transient results for the M/M/1 queue provide a little insight into the behavior of a queueing system through
fixed operation time t, but provide virtually no information on how the systemhas operated until time t. To answer the questions
regarding the system operation during time period t, we developed a two – dimensional M/M/c retrial queueing model with
impatient customers in which the state of the system is given by (i, j) , where i describes the exact number of arrivals in the
system and j describes the exact number of departures from the system until time t. The transient analysis of this model helps
us to understand the behavior of a system. Pegden and Rosenshine (10) analyzed the M/M/1 two-state queueing model. Indra
and Ruchi (11) obtained two-dimensional state time dependent probabilities along with some interesting particular cases for
a single server markovian queueing system where the service mechanism was non-exhaustive. Garg and Kumar (12) obtained
explicit time dependent probabilities of exact number of arrivals and departures from the orbit of a single server retrial queue
with impatient customers.

There aremanymore researcherswho did the similar kind of study but themajor difference tomy study is we studied the two-
dimensional state retrial queueing model instead of total number of customers in the system.We also obtained time dependent
probabilities of the exact number of arrivals and exact number of departures at when all, some or none servers are busy from
the system instead of the orbit.

The rest of the paper is organized as follows: The description of the underlying queueing model and the derivation of the
difference-differential equations are done in Section 2. The time dependent solution for the model is obtained in Section 3. In
Section 4, some important performance measures and special cases are obtained. Concluding remarks are presented in Section
5.

2 Model Description
The service facility consists of a group of ′c′ fully available channels where primary calls arrive. Arrival of primary calls follow a
Poisson stream with rate λ . If an arriving caller finds some channel free, it immediately occupies the channel, takes the service
and then leaves the system. If all the servers are busy at the time of primary calling, the caller leaves the system without service
with probability (1−a1) and joins the orbit with probability a1 > 0 to retry for service from there. Repeating callers retries for
getting service from the orbit and following a Poisson process with parameter θ . If an incoming repeated call finds the server
free, it joins the server and leaves the system after being served. Otherwise, if the server is busy at the time of repeated calling,
there are two possibilities either the caller leaves the system/orbit without service due to impatience with probability (1−a2) or
retries again for service with probability a2> 0. Service times are exponentially distributedwith service rate µ . Interarrival times,
service times, inter-impatient times involved in the above description are assumed to be statistically independent.

Laplace transformation
−
f (s) of f (t) is given by

f̄ ( s) =
∫ ∞

0
e−st f (t)dt, Re(s)> 0

The Laplace inverse of

Q(p)
P(p)

is
n

∑
k=1

mk

∑
l=1

tmk−l eakt

(mk − l)!(l −1)!
X

dl−1

d pl−1

(
Q(p)
P(p)

)
(p−ak)

mk ,∀p = ak, ai ̸= ak for i ̸= k.
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Where,
P(p) = (p−a1)

m1 (p−a2)
m2 . . . . . . . . . .(p−an)

mn

Q(p) is a polynomial of degree < m1 +m2 +m3 + . . . . . . . . . . . . .mn −1

The Laplace inverse of N̄a,b,c
n1,n2 ,n3

( s) =
1

(s+a)n1(s+b)n2(s+ c)n3
is

P(p) = (p−a1)
m1(p−a2)

m2 . . . . . . . . . .(p−an)
mn

Q(p) is a polynomial of degree < m1+m2+m3+………….mn −1.

The Laplace inverse of
−
N

a,b,c

n1,n2,n3
(s) = 1

(s+a)n1 (s+b)n2 (s+c)n3 is

Na,b,c
n1,n2,n3

(t) = ∑n3
l=1 ∑l

m=1
e−at tn3−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n1+g1)

)(
∏m−2

g2=0 (n2+g2)
)

(n3−l)!(m−1)! (b−a)n2+m−1 (c−a)n1+l−m

+∑n2
l=1 ∑l

m=1
e−bt tn2−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n1+g1)

)(
∏m−2

g2=0 (n3+g2)
)

(n2−l)!(m−1)! (a−b)n3+m−1 (c−b)n1+l−m

+∑n1
l=1 ∑l

m=1
e−ct tn1−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n2+g1)

)(
∏m−2

g2=0 (n3+g2)
)

(n1−l)!(m−1)! (a−c)n3+m−1 (b−c)n2+l−m

If L−1 { f (s)}= F(t) and L−1 {g(s)}= G(t), then
L−1 { f (s) g(s)}=

∫ t
0 F (u)G(t −u) du = F ∗G,F ∗G is called the convolution of F and G.

2.1 The Two-Dimensional State Model
AnM/M/c queue is a stochastic process whose state space is the set (0,1,2,3 . . . ..} where the values correspond to the number
of arrivals enter in the system being served and depart from the system.This model includes features that are quite general, and
as a result, a rather extensive class of well-known and often applied queueing systems can be viewed as simply special cases of
the fundamental birth-and-death model.

Themodel assumes a queueing systemwith c (c= 1,2,3 . . . .) parallel identical servers and infinite system capacity, operating
in the following fashion:

1. The arrival of primary calls follows a Poisson distribution with parameter λ and move the process from state i to i+1.
2. The repeated calls to each server follow a Poisson distribution with parameter θ .
3. Service times for each server are exponentially distributed with parameter µ and move the process from state j to j−1.
4. The stochastic processes involved viz. arrivals of units, departures of units and retrials are statistically independent.

Definitions
Pi, j,0(t)= Probability that there are exactly i arrivals in the system and j departures from the system by time t when server is
idle.

Pi, j,m(t)= Probability that there are exactly i arrivals in the system and j departures from the system by time t whenm servers
are busy. 1 ≤ m ≤ c−1.

Pi, j,c(t)= Probability that there are exactly i arrivals in the system and j departures from the system by time t when all the c
servers are busy.

Pi, j (t) = Probability that there are exactly i arrivals in the system and j departures from the system by time t.

Pi, j (t) = Pi, j,0 (t)+
c−1

∑
m=1

Pi, j,m(t)+Pi, j,c(t), ∀i, j i ≥ j

also

Pi, j,c (t) = 0 & Pi, j,m (t) = 0 f or i ≤ j, 1 ≤ m ≤ c−1;Pi, j,0 (t) = 0, i < j.

Initially

P0,0,0 (0) = 1; Pi, j,0 (0) = 0,Pi, j,c (0) = 0 & Pi, j,m (t) = 0, ∀ i, j ̸= 0 & 1 ≤ m ≤ c−1
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2.3 The difference — differential equations governing the system are

d
dt

Pi, j,0(t) =−(λ +(i− j)θ)Pi, j,0(t)+µPi, j−1,1(t) i ≥ j ≥ 0 (2.1)

d
dt

Pi, j,m (t) =−(λ +mµ +(i− j−m)θ)Pi, j,m (t)+ λPi−1, j,m−1 (t)+

(i− j− (m−1))θPi, j,m−1 (t)+(m+1)µPi, j−1,m+1 (t)

i > j ≥ 0,1 ≤ m < c

(2.2)

d
dt

Pi, j,c(t) =−(λa1 + cµ +(i− j− c)θ (1−a2))Pi, j,c(t)+λPi−1, j,c−1(t)+λa1(1−
δi−c, j)Pi−1, j,c(t)+(i− j− (c−1))θPi, j,c−1(t)+(i− j− (c−1))θ (1−a2)Pi, j−1,c(t)

i > 1, i > j ≥ 0

(2.3)

where δi−c, j =

{
1, when i− c = j
0, otherwise

Using the Laplace transformation
−
f (s) of f (t) given by

f̄ (s) =
∫ ∞

0
e−st f (t)dt, Re(s)> 0

in the equations (2.1) - (2.3) along with the initial conditions, we have

(s+λ +(i− j)θ)P̄i, j,0(s) = µP̄i, j−1,1(s) i ≥ j ≥ 0 (2.4)

(s+λ +mµ +(i− j−m)θ)P̄i, j,m(s) = λ P̄i−1, j,m−1(s)+(i− j(m−1))θ P̄i, j,m−1(s)+
(m+1)µP̄i, j,−1,m+1(s)

i > j ≥ 0,1 ≤ m < c
(2.5)

(s+λa1 + cµ +(i− j− c)θ (1−a2)) P̄i, j,c(s) = λ P̄i−1, j,c−1(s)+λa1(1−
δi−c, j) P̄i−1, j,c(s)+(i− j− (c−1))θ P̄i, j,c−1(s)+(i− j− (c−1))θ

(1−a2) P̄i, j−1,c(s)
i > j ≥ 0

(2.6)

where δi−c, j =

{
1, when i− c = j
0, otherwise

3 Solution of the Problem
Solving equations (2.4) to (2.6) recursively, we have

P 0,0,0 ( s) =
1

s+λ
(3.1)

P̄i,i,0(s) =
µ

(s+λ )
P̄i,i−1,1(s) for i ≥ 1 (3.2)

P̄m,0,m(s) =
λ

s+λ +mµ
P̄m−1,0,m−1(s) for 1 ≤ m ≤ c−1 (3.3)

P̄i,i−m,m(s) =
λ

s+λ +mµ
P̄i−1,i−m,m−1(s)+

(m+1)µ
s+λ +mµ

P̄i,i−m−1,m+1(s)

for m = 1 to c−2, i = m+1 to c−1
(3.4)

P̄c,1,c−1(s) =
λ

(s+λ +(c−1)µ)
P̄c−1,1,c−2(s)+

cµ
(s+λ +(c−1)µ)

P̄c,0,c(s) (3.5)
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P̄i,1,c−1(s) =
cµ

(s+λ +(c−1)µ +(i− j− (c−1))θ

i−c

∏
p=0

λ i−(c−1)a1
i−c

(s+λa1 + cµ + pθ (1−a2))
m P̄c−1,0,c−1(s)

for i > c
(3.6)

P̄i,0,c(s) = ∏i−c
p=0

λ i−(c−1)a1
i−c

(s+λa1 + cµ + pθ (1−a2))
m P̄c−1,0,c−1(s) for i ≥ c (3.7)

P̄i, j,c(s) =

[
∑i− j−(c−2)

k=1

{
∏i− j−c

p=k−1

(
λ i− j−(c−2)−ka1i− j− (c−2)− (k+1)

(s+λa1 + cµ + pθ (1−a2)

)}
η ′

k(s)P̄j+k+(c−2), j,c−1( s)

]
+[

∑i− j−(c−1)
k=1

{
∏i− j−c

p=k−1

(
(λa1)

i− j−(c−1)−k kθ (1−a2)

(s+λa1 + cµ + pθ (1−a2)

)}
P̄j+k+(c−1), j−1,c( s)

]
for i ≥ j+ c, j ≥ 1

(3.8)

where η ′
k(s) =


1 for k = 1(

1+ (k−1)θa1
(s+λa1+cµ+(k−2)θ(1−a2))

)
for k = 2 to i− j− (c−1)

(k−1)θ
(s+λa1+cµ+(k−2)θ(1−a2))

for k = i− j− (c−2)

Pi, j,c−1(s) =
λ

s+λ +(c−1)µ +(i− j− (c−1))θ
Pi−1, j,c−2(s)+

(i− j− (c−2))θ
(s+λ +(c−1)µ +(i− j− (c−1))θ

Pi, j,c−2(s)

+
cµ

(s+λ +(c−1)µ +(i− j− (c−1))θ



 ∑i− j−(c−3)
k=1

(
∏i− j−(c−1)

p=k−1
λ i− j−(c−3)−kai− j−(c−3)−(k+1)

1
(s+λa1 + cµ + pθ (1−a2)

)
η ′

k(s)P j+(k+1), j−1,c−1( s)


+

∑i− j−(c−2)
k=1

(
∏i− j−(c−1)

p=k−1
(λa1)

i− j−(c−2)−k kθ (1−a2)

(s+λa1 + cµ + pθ (1−a2)

)
P j+k+(c−2), j−2,c( s)




for i ≥ (c−1)+ j, j > 1

(3.9)

where η ′
k(s) =


1 for k = 1(

1+ (k−1)θa1
(s+λa1+cµ+(k−2)θ(1−a2))

)
for k = 2 to i− j− (c−2)

(k−1)θ
(s+λa1+cµ+(k−2)θ(1−a2))

for k = i− j− (c−3)

P̄i, j,m(s) =
λ

(s+λ +mµ +(i− j−m)θ
P̄i−1, j,m−1(s)+

(i− j− (m−1))θ
(s+λ +mµ +(i− j−m)θ

P̄i, j,m−1

(m+1)µ
(s+λ +mµ +(i− j−m)θ

{
λ

(s+λ +(m+1)µ +(i− j−m)θ
P̄i−1, j−1,m(s)+

(i− j− (m−1))θ
(s+λ +(m+1)µ +(i− j−m)θ

P̄i, j−1,m(s)+
(m+2)µ

(s+λ +(m+1)µ +(i− j−m)θ
P̄i, j−2,m+2(s)

}
for 1 ≤ m ≤ c−2, i ≥ j+m, j > c−m

(3.10)

Pi, j,0(s) =
(m+1)µ

s+λ +(i− j)θ



λ
s+λ +µ +(i− j)θ

Pi−1, j−1,0(s)+
(i− j+1)θ

s+λ +µ +(i− j)θ
Pi, j−1,0(s)+

(m+2)µ
s+λ +µ +(i− j)θ



λ
s+λ +2µ +(i− j)θ

Pi−1, j−2,m+1(s)+

... · · ·
(i− j+1)θ

s+λ +2µ +(i− j)θ
Pi, j−1,m+1(s)+

(m+3)µ
(s+λ +2µ +(i− j)θ

Pi, j−3,m+3(s)




for i > j ≥ c

(3.11)
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Taking the Inverse Laplace transform of equations (3.1) to (3.11), we have

P0,0,0(t) = e−λ t (3.12)

Pi,i,0(t) = µe−λ t ∗Pi,i−1,1(t) for i ≥ 1 (3.13)

Pm,0,m(t) = λe−(λ+mµ)t ∗Pm−1,0,m−1(t) for 1 ≤ m ≤ c−1 (3.14)

Pi,i−m,m(t) = λe−(λ+mµ)t ∗Pi−1,i−m,m−1(t)+(m+1)µe−(λ+mµ)t ∗Pi,i−m−1,m+1(t)
for m = 1 to c−2, i = m+1 to c−1

(3.15)

Pc,1,c−1(t) = λe−(λ+(c−1)µ)t ∗Pc−1,1,c−2(t)+ cµe−(λ+(c−1)µ)t ∗Pc,0,c(t) (3.16)

Pi,1,c−1(t) =cµλ i−(c−1)ai−c
1 e−(λ+(c−1)µ+(i− j−(c−1))θ)t

i−c

∏
p=0

1(
cµ
a1

+
pθ (1−a2)

a1

) − e
−

cµ
a1

+
pθ (1−a2)

a1

t(
cµ
a1

+
pθ (1−a2)

a1

)
∗Pc−1,0,c−1(t)

f ori > c (3.17)

Pi,0,c(t) = λ i−(c−1)a1
i−c
{

∏i−c
p=0 e−(λa1+cµ+pθ(1−a2))

}
∗Pc−1,0,c−1(t)

for i ≥ c
(3.18)

Pi, j,c(t) = λ i− j−(c−1)a1
i− j−c

{
∏i− j−c

p=0 e−(λa1+cµ+pθ(1−a2))t
}
∗Pj+c−1, j,c−1(t)+

∑i− j−(c−1)
k=2 λ i− j−(c−2)−kai− j−(c−2)−(k+1)

1

{
∏i− j−c

p=k−1 e−(λa1+cµ+pθ(1−a2))t
}

∗Pj+k+c−2, j,c−1(t)+∑i− j−(c−1)
k=2 λ i− j−(c−2)−kai− j−(c−2)−(k+1)

1 +

(k−1)θa1e−(λa1+cµ+(k−2)θ(1−a2))t

∏i− j−c
p=k−1

1(
cµ
a1

+
pθ (1−a2)

a1

) − e
−

cµ
a1

+
pθ (1−a2)

a1

t(
cµ
a1

+
pθ (1−a2)

a1

)


∗Pj+k+c−2, j,c−1(t)+
(i− j− c+1)θ

a1
e−(λa1+cµ+(i− j−c)θ(1−a2))tPi, j,c−1(t)+

∑i− j−(c−1)
k=1 (λa1)

i− j−(c−1)−k kθ (1−a2)
{

∏i− j−c
p=k−1 e−(λa1+cµ+pθ(1−a2))t

}
∗Pj+k+c−1, j−1,c(t) for i ≥ j+ c, j ≥ 1

(3.19)

Pi, j,c−1(t) =
(

λe−(λ+(c−1)µ+(i− j−(c−1))θ)t
)
∗Pi−1, j,c−2(t)+(i− j− (c−2))θ(

e−(λ+(c−1)µ+(i− j−(c−1))θ)t
)
∗Pi, j,c−2(t)+(cµ)λ i− j−(c−2)

−(λ +(c−1)µ +(i− j− (c−1))θ)t

Πi− j−(c−1)
p=0

1(
cµ
a1

+
pθ(1−a2)

a1

) − e
−
(

cµ
a1

+
pθ(1−a2)

a1

)
t(

cµ
a1

+
pθ(1−a2)

a1

)


∗Pj+2, j−1,c−1(t)+(cµ)e−(λ+(c−1)µ+(i− j−(c−1))θ)t ∑i− j−c+2
k=2 λ i− j−(c−3)−k

ai− j−(c−3)−(k+1)
1

∏i− j−(c−1)
p=k−1

1(
cµ
a1

+
pθ(1−a2)

a1

) − e
−
(

cµ
a1

+
pθ(1−a2)

a1

)
t(

cµ
a1

+
pθ(1−a2)

a1

)
∗
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Pj+k+1, j−1,c−1(t)+
(cµ)∑i− j−(c−2)

k=2 (k−1)θλ i− j−(c−3)−kai− j−(c−3)−(k+1)
1

∏i− j−(c−1)
p=k−1

e−(λ+(c−1)µ+(i− j−(c−1))θ)t

{λ (a1−1)+µ+θ{p(1−a2)−(i− j−(c−1))}}{λ (a1−1)+µ+e((k−2)(1−a2)−(i− j−(c−1))}}

}
+{

∏i− j−(c−1)
p=k−1

e−{λa1+cµ+(k−2)θ(1−a2)}t

{λ (1−a1)−µ+θ{(i− j−(c−1))−(k−2)(1−a2)}}{θ(1−a2){p−(k−2)}}

}
+{

∏i− j−(c−1)
p=k−1

e−{λa1+cµ+pθ(1−a2)}t

{θ(1−a2){(k−2)−p}}{θ((i− j−(c−1))−p(1−a2)}−µ}





∗Pj+k+1, j−1,c−1(t)+
cµ(i− j− c+2)e−(λa1+(c−1)µ+(i− j−(c−1))θ)t

a1
1(

cµ
a1

+
(i− j− c+1)θ (1−a2)

a1

) − e
−

cµ
a1

+
(i− j− c+1)θ (1−a2)

a1

t(
cµ
a1

+
(i− j− c+1)θ (1−a2)

a1

)
∗Pi−c+4, j−1,c−1(t)+ cµ

e−(λ+(c−1)µ+(i− j−(c−1))θ)t ∑i− j−c+2
k=2 (λa1)

i− j−(c−2)−k kθ(1−

a2)

∏i− j−(c−1)
p=k−1

1(
cµ
a1

+
pθ1 −a2)

a1

) − e
−

cµ
a1

+
pθ (1−a2)

a1

t(
cµ
a1

+
pθ (1−a2)

a1

)
∗Pj+k+c−2, j−2,c(t)

for i ≥ (c−1)+ j, j ≥ 1

(3.20)

Pi, j,m(t) = λe−{λ+mµ+(i− j−m)θ}t ∗Pi−1, j,m−1(t)+(i− j− (m−1)θ)
e−{λ+mµ+(i− j−m)θ}t ∗Pi, j,m−1(t)+λ ((m+1)µ)e−{λ+mµ+(i− j−m)θ}t{

1
{(m+1)µ+(i− j−m)θ} −

e−{(m+1)µ+(i− j−m)θ}t

{(m+1)µ+(i− j−m)θ}

}
∗Pi−1, j−1,m(t)+(m+1)µ

(i− j− (m−1))θe−{λ+mµ+(i− j−m)θ}t

{
1

{(m+1)µ+(i− j−m)θ} −
e−{(m+1)µ+(i− j−m)θ}t

{(m+1)µ+(i− j−m)θ}

}
∗Pi, j−1,m(t)+

(m+1)(m+2)µ2e−{λ+mµ+(i− j−m)θ}t
{

1
{(m+1)µ +(i− j−m)θ}

− e−{(m+1)µ+(i− j−m)θ}t

{(m+1)µ +(i− j−m)θ}

}
∗Pi, j−2,m+2(t)

for 1 ≤ m ≤ c−2, i ≥ j+m, j ≥ (c−m)

(3.21)
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Pi, j,0(t) =

[
λ (m+1)µe−(λ+(i− j)θ}t

{
1

µ +(i− j)θ}
− e−{µ+(i− j)θ}t

{µ +(i− j)θ}

}]
∗Pi−1, j−1,0(t)+

[
((i− j+1)θ)(m+1)µe−(λ+(i− j)θ}t

{
1

µ +(i− j)θ}
− e−{µ+(i− j)θ}t

{µ +(i− j)θ}

}]
∗Pi, j−1,0(t)

+

[
(m+1)(m+2)µ2λ

{
e−{λ+(i− j)θ}t

2µ2 +
e−{λ+µ+(i− j)θ}t

µ2 − e−{λ+(i− j)θ+2µ}t

2µ2

}]

∗Pi−1, j−2,m+1(t)+

[
(m+1)(m+2)µ2((i− j+1)θ)

{
e−{λ+(i− j)θ}t

2µ2 +

e−{λ+µ+(i− j)θ}t

µ2 − e−{λ+(i− j)θ+2µ}t

2µ2

}]
∗Pi, j−2,m+1(t)+

[
(m+1)(m+2)(m+3)µ3

{
e−{λ+(i− j)θ}t

2µ2 +
e−{λ+µ+(i− j)θ}t

µ2 − e−{λ+(i− j)θ+2µ}t

2µ2

}]
∗Pi, j−3,m+3(t)

for i > j ≥ c

(3.22)

4 Some Important Performance Measures

4.1 The Laplace transform of the probability Pi. (t) that exactly i units arrive by time t is :

−
Pi. (s) = ∑i

j=0

−
Pi, j (s) =

λ i

(s+λ )i+1 ; i > 0 (4.1)

And its Inverse Laplace transform is

Pi.(t) =
e−λ t(λ t)i

i!
. (4.2)

The very (basic) assumption on primary arrivals is that it forms a Poisson process and above analysis of abstract solution also
verifies the same.

4.2 The probability that exactly j customers have been served by time t, P. j (t) in terms of Pi, j (t)
is given by:

P. j (t) = ∑∞
i= j Pi, j (t)

4.3 From the abstract solution of our model, we verified that the sum of all possible probabilities
is one i.e. taking summation over i and j on equations (3.1) — (3.11) and adding, we get

∞

∑
i=0

i

∑
j=0

{
−
Pi, j,0 (s)+

c−1

∑
m=1

−
Pi, j,m (s)+

−
Pi, j,c (s)

}
=

1
s
.

After taking the inverse Laplace transformation, we get
∞

∑
i=0

i

∑
j=0

{
Pi, j,0 (t)+

c−1

∑
m=1

Pi, j,m (t)+Pi, j,c (t)

}
= 1.
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which is a veri f ication of our results.

4.4 Define Qn,m (t) as the probability that there are n customers in the orbit at time t and
m (m = 1,2, . . .c) servers are busy.

When m servers are busy, it is defined by probability Qn,m (t)

Qn,m (t) =
∞

∑
j=0

Pj+n+m, j,m (t) (m = 1,2, . . .c)

The number of customers i.e. ‘n’ in the orbit is obtained by using the relation:
n = (number of arrivals – number of departures – m)
Using above relation and letting µ=1 from the equations (2.1) to (2.3) the set of equations in statistical equilibrium are:

(λ +m+nθ)Qn,m = λ Qn,m−1 +(n+1)θ Qn+1,m−1 +(m+1) Qn,m+1

0 ≤ m ≤ c−1, n ≥ 0
(4.3)

(λ a1 +nθ (1−a2)+ c)Qn,c = λ Qn,c−1 +(n+1)θ Qn+1,c−1

+λ a1 Qn−1,c (1−δn,0)+(n+1)θ (1−a2) Qn+1,c

(case m = c) , n ≥ 0

(4.4)

where δn,0 =

{
1, when n = 0
0, when n ≥ 1

Now, for generating functions

Qm(z) =
∞

∑
n=0

znQn,m 0 ≤ m ≤ c

Letting z = 1, then Qm (1) = ∑∞
n=0 Qn,m = Qm (say)0 ≤ m ≤ c

these equations become

(λ +m)Qm(z)+θz Q′
m(z) = λQm−1(z)+θQ′

m−1(z)+(m+1)Qm+1(z)
0 ≤ m ≤ c−1 (4.5)

λa1 (1− z)Qc (z)+ cQc (z) = λQc−1 (z)+ θ Q,
c−1 (z)+θ (1−a2)(1− z)Q,

c (z)

(case m = c)
(4.6)

Then above equations coincide with the equations of (4.17) and (4.18) of Falin & Templeton (13).

4.5 Special Cases:

(a) When we consider a1 = 1 and a2 = 1 in equations (4.3) and (4.4), we get

(λ +m+nθ)Qn,m = λQn,m−1 +(n+1)θQn+1,m−1 +(m+1)Qn,m+1
0 ≤ m ≤ c−1,n ≥ 0 (4.7)

(λ + c)Qn,c = λQn,c−1 +(n+1)θQn+1,c−1 +λQn−1,c (1−δn,0)
(case m = c), n ≥ 0. (4.8)

where δn,0 =

{
1, when n = 0
0, when n ≥ 1

Above equations coincide with that of (2.17) and (2.18) of Falin & Templeton (13).
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(b) Letting a1 = β ,a2 = 1 and c = 1 in equations (3 12) to (3 22), we get the following equations

P0,0,0 (t) = e−λ t (4.9)

Pi,1,0(t) = µe−(λ+(i−1)θ)t ∗Pi,0,1(t) for i ≥ 1 (4.10)

Pi,i,0(t) =

(λ µ)e−λ t


1(
µ
β

) − e
−

(µ
β

)
t(

µ
β

)
∗Pi−1,i−1,0(t)+(µθ)e−λ t


1(
µ
β

) − e
−

(µ
β

)
t(

µ
β

)
∗Pi,i−1,0(t)


for i ≥ 1

(4.11)

P1,0,1(t) = λe−λ t


1(
µ
β

) − e
−

(µ
β

)
t(

µ
β

)
 (4.12)

Pi,0,1(t) = (λβ )i−1e−(λβ+µ)t t i−2

(i−2)!
∗P1,0,1(t) for i > 1 (4.13)

Pi,i−1,1(t) =
(

λe−(λβ+µ)t ∗Pi−1,i−1,0(t)+θe−(λβ+µ)t ∗Pi,i−1,0(t)
)

for i > 1
(4.14)

Pi, j,1(t) =
i− j−1(β )i− j−2e−(β+ )t t i− j−2

(i− j−2)!
∗ Pj+1, j,0 (t)+

∑i− j−1
k=2

[
i− j−k(β )i− j−k−1e−(β+ )t t i− j−k−1

(i− j− k−1)!
∗ Pj+k, j,0 (t)

]
+

∑i− j−1
k=2

[
i− j−k (β )i− j−k−1 (kθβ )e−(β+ )t t i− j−k

(i− j− k)!
∗ Pj+k, j,0 (t)

]
+

(i− j) θe−(β+ )t ∗Pi, j,0 (t)+ (β )i− j−1e−(β+ )t t i− j−2

(i− j−2)!
∗ Pj+1, j,1 (t)

for i ≥ j+2, j ≥ 1

(4.15)

Pi, j,0(t) = µλ i− j(β )i− j−1e−(λ+(i− j)θ)t

{
1(

µ
β

)i− j − e−
(

µ
β

)
t
∑i− j−1

r=0
tr

r!
1(

µ
β

)i− j−r

}
∗

Pj, j−1,0(t)+µe−(λ+(i− j)θ)t

[
∑i− j

k=2(λ )
i− j−k+1(β )i− j−k

{
1(

µ
β

)i− j−k+1 − e−
(

µ
β

)
t
∑i− j−k

r=0
tr

r!
1(

µ
β

)i− j−k+1−r

}
∗Pj+k−1, j−1,0(t)

]
+

µe−(λ+(i− j)θ)t

[
∑i− j

k=2(λ )
i− j−k+1(β )i− j−k(kθβ )

{
1(

µ
β

)i− j−k+2 − e−
(

µ
β

)
t
∑i− j−k+1

r=0
tr

r!
1(

µ
β

)i− j−k+2−r

}
∗Pj+k−1, j−1,0(t)

]
+

µ(i− j+1)θe−(λ+(i− j)θ)t


1(
µ
β

) − e
−

(µ
β

)
t(

µ
β

)
Pi, j−1,0(t)+

µ(λβ )i− je−(λ+(i− j)θ)t


1(

µ
β

)i− j − e
−

(µ
β

)
t i− j−1

∑
r=0

tr

r!
1(

µ
β

)i− j−r

∗Pj, j−1,1(t)

for i > j > 1

(4.16)

Above equation coincide with those of Singla and Kalra (14).
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(c) On putting a1 = 1, a2 = α and c = 1 in equations (3.12) to (3.22), we get the following equations and these
results coincide with that of Singla and Kalra (15).

P0,0,0 (t) = e−λ t (4.17)

Pi,1,0(t) = µe−(λ+(i−1)θ)t ∗Pi,0,1(t) for i ≥ 1 (4.18)

Pi,i,0 =

(λ µ)e−λ t
{

1
µ
− e−µt

µ

}
∗Pi−1,i−1,0(t)+(µθ)e−λ t

{
1
µ
− e−µt

µ

}
∗Pi,i−1,0(t)

+(µθ)(1−α)e−λ t
{

1
µ
− e−µt

µ

}
∗Pi,i−2,1(t)


f or i > 1

(4.19)

P1,0,1(t) = λe−λ t
{

1
µ
− e−µt

µ

}
(4.20)

Pi,0,1(t) = (λ )i−1
{

∏i−1
m=1 e−(λ+µ+mθ(1−α))t

}
∗P1,0,1(t)
for i > 1

(4.21)

Pi,i−1,1(t) =
(

λe−(λ+µ)t ∗Pi−1,i−1,0 +θe−(λ+µ)t ∗Pi,i−1,0 +θ(1−α)e−(λ+µ)t∗
Pi,i−2,1)

for i > 1
(4.22)

Pi, j,1(t) = λ i− j−1
{

∏i− j−1
m=1 e−(λ+µ+mθ(1−α))t

} tm−1

(m−1)!
∗Pj+1, j,0(t)+

∑i− j−1
k=2

[
λ i− j−k

{
∏i− j−1

m=k e−(λ+µ+mθ(1−α))t
} tm−k

(m− k)!
∗Pj+k, j,0(t)

]
+

∑i− j−1
k=2

[
λ i− j−k(kθ)

{
∏i− j−1

m=k−1 e−(λ+µ+mθ(1−α))t
} tm−k

(m− k)!
∗Pj+k, j,0(t)

]
+

(i− j)θe−(λ+µ+(i− j−1)θ(1−α))t ∗Pi, j,0(t)+∑i− j−1
k=1

[
(λ )i− j−k−1(k+1)θ

(1−α)
{

∏i− j−1
m=k e−(λ+µ+mθ(1−α))t

} tm−k

(m− k)!
∗Pj+k+1, j−1,1(t)

]
+[

(λ )i− j−1
{

∏i− j−1
p=1 e−(λ+µ+pθ(1−α))t

} t p−1

(p−1)!
∗Pj+1, j,1(t)

]
for i ≥ j+2, j ≥ 1

(4.23)
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Pi, j,0(t) = µλ i− je−(λ+(i− j)θ)t

{
∏i− j

m=1
1

(µ +mθ(1−α))m − e−(µ+mθ(1−α))t
m−1

∑
r=0

tr

r!
1

(µ +mθ(1−α))m−r

}
∗

Pj, j−1,0(t)+λ µe−(λ+(i− j)θ)t
[

∑i− j
k=2(λ )

i− j−k
{

∏i− j
m=k

1
(µ +mθ(1−α))m−k+1−

e−(µ+mθ(1−α))t ∑m−k
r=0

tr

r!
1

(µ +mθ(1−α))m−k+1−r

}
∗Pj+k−1, j−1,0(t)

]
+

λ µe−(λ+(i− j)θ)t
[

∑i− j
k=2(λ )

i− j−k(kθ)
{

∏i− j
m=k−1

1
(µ +mθ(1−α))m−k+2−

e−(µ+mθ(1−α))t ∑m−k+1
r=0

tr

r!
1

(µ +mθ(1−α))m−k+2−r

}
∗Pj+k−1, j−1,0(t)

]
+µ(i− j+

1) θe−(λ+(i− j)θ)t

{
1

µ +(i− j)θ(1−α)
− e−(µ+(i− j)θ(1−α))t

µ +(i− j)θ(1−α)

}
∗Pi, j−1,0(t)+

µe−(λ+(i− j)θ)t
[

∑i− j
k=1(λ )

i− j−k(k+1)θ(1−α)

{
∏i− j

m=k
1

(µ +mθ(1−α))m−k+1−

e−(µ+mθ(1−α))t ∑m−k
r=0

tr

r!
1

(µ +mθ(1−α))m−k+1−r

}
∗Pj+k, j−2,1(t)

]
+

µ(λ )i− je−(λ+(i− j)θ)t

{
∏i− j

p=1
1

(µ + pθ(1−α))p − e−(µ+pθ(1−α))t
p−1

∑
r=0

tr

r!
1

(µ + pθ(1−α))p−r

}
∗Pj, j−1,1(t)

for i > j > 1

(4.24)

5 Conclusion
Customer impatience represents the loss in revenues and customer goodwill to the service provider. Multiple servers are used
to reduce traffic congestion and also used in highly efficient bandwidth intensive applications. In this study, we considered
a Makovian multiserver model, where the simultaneous effect of customer impatience and retffigrials is evaluated. Previous
research helps us to deal with arrivals and departures from the orbit but in our research, we discuss about the arrivals and
departures from the system instead of the orbit which makes a major impact on latest research. We have used the recursive
method to find the time dependent probabilities when all, some or none servers are busy. In queueing theory generally, we deal
with a total number of customers in the system but in this research, we deal with the two-dimensional state which means the
exact number of arrivals in the system and exact number of departures from the system. After finding the probabilities, we
verified our results with the help of these probabilities. Along with this some special cases also computed which matches with
the previous research.
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