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Abstract
Objectives: k – ideals plays a vital role in ternary semirings. Ternary algebraic
systems is a generalization of algebraic structures and it is the most natural
way for the further development, deeper understanding of their properties.
Methods: We have imposed Integral Multiple Property (IMP) and some other
different constrains on a ternary semiring. Findings: In this study, we have
described more results on the full k-ideal in the ternary semirings. Finally, we
provide the characterization of full k-ideal in ternary semirings and studied
their related properties. Applications: The structures of ideals in ternary
semirings are widely applicable to computer sciences, dynamical and logical
systems, cryptography, graph theory and artificial intelligence.
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1 Introduction

The first formal definition of semiring was introduced in the year 1934 by Vandiver (1).
Several researches have characterized themany type of ideals on the algebraic structures
such as: In 1958, Iséki considered and proved some theorems on quasi-ideals in
semirings. However the developments of the theory in semirings have been taking
place since 1950. A semiring is basic structure in Mathematics. The semiring theory
and semigroup theory influenced on the developments of the semiring theory and its
ordering. Nagi Reddy U, Rajani K, and Shobhalatha G have studied the fuzzy bi-ideals
in ternary semigroups (2). Ternary rings are introduced with their structures (3). Some
properties of ternary semirings are derived with the quasi ideals and Bi ideals (4). S*
semirings and A* semirings, which are studied with the some special structures (5).
Certain type of ring congruences on an additive inversive semirings with the help of
full k-ideals is studied (6). Sen and Adhikari gave some characterizations of maximal
k-ideals of semiring.

Our main purpose of this paper is to introduce the notions of k- ideals and full k -
ideals in ternary semirings and study the set of all full k-ideals of an additively inverse
ternary semiring in which addition is commutative forms a complete lattice which is
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also modular.

2 Preliminaries
Definition 2.1: A Ternary semiring is a nonempty set S together with the binary operation addition and ternary operation
multiplication denoted by+, · respectively, satisfying the following conditions:

1. (S,+) is a commutative semigroup.
2. (S, ·) is ternary semigroup.
3. Distributive laws holds, i.e., a ·b(c+d) = a ·b.c+a ·b.d a(b+c)d = a ·b ·d+a.c.d and (a+b) ·c ·d = a ·c ·d+b.c ·d

Definition 2.2: An element a of a ternary semiring S is said to be additive idempotent element provided a+a=a .
Note: The set of all additive idempotent elements in a ternary semiring S is denoted by E+(S) .
That is E+(S) = {a ∈ S/a+a = a}.

Definition 2.3: A ternary semiring S is called E-inverse, if for every a ∈ S , there exists x ∈ S such that a+ x ∈ E+(S) .
Note : Let S be a ternary semi ring, then E+(S) is an ideal of S.
Definition 2.4: A subset I of a ternary semiring S is called a left (resp. a right, lateral) ideal of S if

1. a+b ∈ I for all a,b ∈ I
2. for any a ∈ I, and b,c ∈ S,bca ∈ I( resp. abc ∈ I,bac ∈ I)

A subset I is called an ideal if I is left, lateral and right ideal.
Note:

1. If A,B are any two ideals of a ternary semiring S, then A∩B is an ideal.
2. Let A,B be two ideals of a ternary semiring S, then the sum of A,B denoted by A+B is an ideal of S where A+B = {x =

a+b | a ∈ A,b ∈ B}

Definition 2.5: An ideal I of a ternary semiring S is called full if E+(S)⊆ I
Example: In any ternary ring R, the set E+(R) = {0} , and so every ideal of R is a full ideal.
Definition 2.6.An ideal I of a ternary semiring S is called k-ideal or subtractive if for any two elements a ∈ I and x ∈ S such

that a+ x ∈ I , then x ∈ I .
Example. In any ternary ring R, every ideal I is k-ideal, since for any a ∈ I,x ∈ R such that a+ x ∈ I then a+ x+(−a) ∈

I so x ∈ I
Definition 2.7. A k-ideal I of a ternary semiring S is called full k-ideal if the set of all additive idempotents of S, E+(S) is

contained in I.
Example 1: In any ternary ring R every ideal I is a full k-ideal. Since 0 is the only additive idempotent element in R which

belongs to any ideal I of R. So I is full k-ideal.
Example 2: In a distributive lattice L with more than two elements, a proper ideal I is k-ideal but not full k-ideal. Let

a ∈ I,x ∈ L such that a∨ x ∈ I, then x ≤ a∨ x . But I is an ideal so x = x∧ (a∨ x) ∈ I . Hence I is k-ideal. Moreover, the
set of all additive idempotents of L is L itself, since a∨a = a for all a ∈ L . So I is not full k-ideal.

Example 3: In Z×Z+ = {(a,b) : a,b are integers and b > 0} we define (a,b)+(c,d) = (a+c, lcm(b,d)) and (a,b) · (c,d) ·
(e, f ) = (a.c.e,gcd(b,d, f )), then Z ×Z+ is an additive inversive ternary semiring.

Solution: Let (a,b),(c,d),(e, f ) ∈ Z ×Z+

Additive commutative:

(a,b)+(c,d) = (a+ c, lcm(b,d)) = (c+a, lcm(b,d)) = (c,a)+(a,b)

Additive associative:

((a,b)+(c,d))+(e, f ) = ((a+ c, lcm(b,d))+(e, f )
= (((a+ c)+ e, lcm(lcm(b,d), f ))
= ((a+(c+ e), lcm(b, lcm(d, f )))
= (a,b)+((c+ e), lcm(d, f ))
= (a,b)+((c,d)+(e, f )).
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Multiplicative associative: Similarly as additive associative Distributive:

(a,b) · (c,d)((e, f ))+(g,h)) = (a,b) · (c,d)(e+g, lcm( f ,h))
= (a · c(e+g),gcd(b,d, lcm( f ,h)))
= (a · c.e+a · c.g, lcm(gcd(b,d, f ),gcd(b,d,h)))
= (a · c.e,gcd(b,d, f ))+(a · c.e,gcd(b,d,h))
= ((a,b) · (c,d)(e, f )+(a,b) · (c,d)(g,h))

Similarly, ((e, f ))+(g,h))(a,b) · (c,d) = ((e, f )(a,b) · (c,d)+(g,h)(a,b) · (c,d))
Additive inverse: For any (a,b) ∈ Z ×Z+ there exists a unique (−a,b) ∈ Z ×Z+ such that

(a,b)+(−a,b)+(a,b) = (a+−a+a, lcm(b,b,b)) = (a,b),
(−a,b)+(a,b)+(−a,b) = (−a+a+−a, lcm(b,b,b)) = (−a,b)

Moreover, the set A = {(a,b) ∈ Z ×Z+−a = 0,b ∈ Z+} is full k-ideal of Z ∈ Z+ .
Since E+ (Z ×Z+) = {0}×Z+ ⊆ A and for any (0,b) ∈ A,(c,d) ∈ Z ×Z+ such that (0,b)+ (c,d) = (c, lcm(b,d)) ∈ A,

then c = 0, so (c,d) ∈ A .
Definition 2.8: Let A be an ideal of an additive inversive ternary semiring S. We define the k-closure of A, denoted by A by:

Ā = {a ∈ S ·a+ x ∈ A for some x ∈ A}

Definition 2.9: A lattice L is called a modular lattice simply modular, if for a,b,c ∈ L,a ≤ b a ∧ c = b ∧ c a ∨ c =
b∨ c implies a = b .

3 Main Results
Theorem 3.1. Let A and B be two full k-ideal of a ternary semiring S. then A∩B is full k-ideal.

Proof. Let A and B be two full k-ideal of S, then A∩B is an k ideal which is full as E+(S)⊆ A and E+(S)⊆ B
Let x ∈ S such that a+ x ∈ A

∩
B for some a ∈ A∩B . Then a+ x ∈ A,a ∈ A and a+ x ∈ B,a ∈ B which implies that

x ∈ A and x ∈ B .
Hence, x ∈ A

∩
B

Therefore, A∩B is full k-ideal.
Theorem 3.2. Every k-ideal of ternary semiring S is an inversive sub semiring of S.
Proof. Clearly that every ideal of S is sub semiring of S. Let a ∈ I, then a ∈ S , so there exist a′ ∈ S such that a = a+a′+a =

a+(a′+a) ∈ I .
But I is a k-ideal and a ∈ I, so a′+a ∈ I . Again I is a k-ideal and a ∈ I, so a′ ∈ I .
Hence I is an inversive sub semiring of S.
Theorem 3.3. Let A be an ideal of ternary semirin S. Then A is a k -ideal of S. Moreover A ⊆ Ā .
Proof. Let a,b ∈ Ā, then a+ x,b+ y ∈ A for some x,y ∈ A .
Now (a+b)+(x+ y) = (a+ x)+(b+ y) ∈ A .
But x+ y ∈ A, so a+b ∈ Ā . Next let p,r ∈ S, then pra + prx = pr(a+ x) ∈ A .
But prx ∈ A, so, pra ∈ A. Similarly, apr ∈ A .
Since A is an ideal of S.
To show that Ais k-ideal.
Let c,c+d ∈ Ā , then there exist x and y in A such that c+ x ∈ A and c+d + y ∈ A .
Now d +(c+ x+ y) = (c+d + y)+ x ∈ A and c+ x+ y ∈ A .
Hence d ∈ A and so A is a k-ideal of S.
Finally, since a+a ∈ A for all a ∈ A , it follows that A ⊆ Ā .
Corollary 3.1 Let A be an ideal of ternary semiring S. Then A = A if and only if Ais a k-ideal.
Proof. Suppose A = A, then by theorem 3.3 Ais k-ideal, and so A is k-ideal.
Conversely, assume that A is a k-ideal. Again by theorem 3.3 A ⊆ Ā.
On the other hand, let a ∈ A then a+x ∈ A for some x ∈ A . But A is a k-ideal and x ∈ A, implies a ∈ A , so A ⊆ A . Therefore

A = A.
Corollary 3.2: Let A and B be two ideals of a ternary semiring S such that A ⊆ B , Then Ā ⊆ B̄ .
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Proof. Let A and B be two ideals of S such that A ⊆ B, let a ∈ Ā, then a+ x ∈ A for some x ∈ A, but A ⊆ B, so a+ x ∈
B for some x ∈ B .

Hence a ∈ B̄ , Therefore A ⊆ B .
Corollary 3.3: Let A be an ideal of ternary semiring S. Then A is the smallest k-ideal containing A.
Proof. Let B be a k-ideal of S such that A ⊆ B, let x ∈ Ā . Then x+a1 = a2 for some a1,a2 ∈ A .
Since A ⊆ B and B is a k-ideal, then x ∈ B .
This implies that Ā ⊆ B .
Therefore A is the smallest k-ideal containing A.
Theorem 3.4: Let A and B be two full k-ideals of ternary semiring S. then A+B is a full k-ideal of S such that A ⊆

A+B and B ⊆ A+B .
Proof. Let A and B be two full k-ideals of ternary semiring S. Then A+B is an ideal of S.
Then by theorem 3.3 A+B is a k-ideal and A+B ⊆ A+B .
Now E+(S)⊆ A and E+(S)⊆ B . So for any e ∈ E+(S),e = e+ e.
Hence E+(S)⊆ A+B ⊆ A+B . Which implies that A+B is a full k-ideal.
Finally let a ∈ A , Then a = a+a′+a = a+(a′+a) ∈ A+B as a′+a ∈ E+(S)⊆ B
Hence A ⊆ A+B and similarly B ⊆ A+B .
Theorem 3.5:The set of all full k-ideals of ternary semi ring S. denoted by I(S), is a complete lattice which is also modular.
Proof. Firstly we note that I(S) is a partially ordered set with respect to usual set inclusion. Let A,B ∈ I(S). Then byTheorem

3.1 A∩B ∈ I(S) , and byTheorem 3.4, A+B ∈ I(S) .
Define A∧B = A

∩
B and A∨B = A+B .

It is clearly that A∩B = inf{A,B} , letC ∈ I(S) such that A,B ⊆C .
Then A+B ⊆C and A+B ⊆C. ButC = C̄ .
Which implies that A+B ⊆C .
Hence A+B = sup{A,B}.Thus we find that I(S) is a lattice.
If S be a ternary semiring, then E+(S) is an ideal of S.
Thus E+(S) is an ideal of S, which contained in every ideal in I(S).
Hence E+(S) is the smallest full k-ideal in I(S), and also S ∈ I(S).
Consequently I(S) is a complete lattice.
Finally to show that I(S) is modular.
Suppose that A,B,C ∈ I(S) such that A∧B = A∧C and A∨B = A∨C and B ⊆C .
Let x ∈C . we haveC ⊆ A+C = A∨C, so x ∈ A∨C = A+B .
Hence there exists a+b ∈ A+B such that x+a+b = a1 +b1 for some a1 ∈ A,b1 ∈ B .
Then x+a+a′+b = a1 +b1 +a′ .
But x ∈C,a+a′ ∈ E+(S)⊆C
Since C is full ideal and b ∈ B ⊆C, then a1 +b1 +a′ ∈C. But b1 ∈ B ⊆C , which is k-ideal.
So a1 +a′ ∈C, also a1 +a′ ∈ A which implies that a1 +a′ ∈C∩A = A

∩
B .

Hence a1 +a′ ∈ B .
So from (1), We find that x+a+a′+b = a1 +a′+b ∈ B . But (a+a′)+b ∈ B , which is a k-ideal.
Which implies that x ∈ B .
Hence B=C.
Therefore I(S) is a modular lattice.

4 Conclusions
We considered the notion of k-ideals and fully k ideals in ternary semirings and studied their properties and relations between
them.

References
1) Vandiver HS. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bulletin of the American Mathematical Society.

1934;40(12):914–921. Available from: https://dx.doi.org/10.1090/s0002-9904-1934-06003-8.
2) Reddy UN, Rajani K, Shobhalatha G. A Note on Fuzzy Bi-Ideals in Ternary Semigroups. Annals of Pure and Applied Mathematics. 2018;16(2):295–304.

Available from: https://dx.doi.org/10.22457/apam.v16n2a5.
3) Lister WG. Ternary rings. Transactions of the American Mathematical Society. 1971;154:37–55. Available from: https://dx.doi.org/10.1090/s0002-9947-

1971-0272835-6.

https://www.indjst.org/ 1789

https://dx.doi.org/10.1090/s0002-9904-1934-06003-8
https://dx.doi.org/10.22457/apam.v16n2a5
https://dx.doi.org/10.1090/s0002-9947-1971-0272835-6
https://dx.doi.org/10.1090/s0002-9947-1971-0272835-6
https://www.indjst.org/


Sunitha et al. / Indian Journal of Science and Technology 2021;14(21):1786–1790

4) Kar S. On quasi-ideals and bi-ideals in ternary semirings. International Journal of Mathematics and Mathematical Sciences. 2005;2005(18):3015–3023.
Available from: https://dx.doi.org/10.1155/ijmms.2005.3015.

5) Rajeswari G, Amala M, Vasanthi T. Some special structures of S* and A* semirings. Indian Journal of Science;13(39):4109–4115. Available from:
https://doi.org/10.17485/IJST/v13i39.1702.

6) Sen MK, Adhikari MR. Onk-ideals of semirings. International Journal of Mathematics and Mathematical Sciences. 1992;15(2):347–350. Available from:
https://dx.doi.org/10.1155/s0161171292000437.

https://www.indjst.org/ 1790

https://dx.doi.org/10.1155/ijmms.2005.3015
https://doi.org/10.17485/IJST/v13i39.1702
https://dx.doi.org/10.1155/s0161171292000437
https://www.indjst.org/

	Introduction
	Preliminaries
	Main Results
	Conclusions

