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Abstract

Objectives/Methods: The main objective here is to make an optimum design of
buoy. Wave power generation is one of the extensive research fields all over
the world. The ocean waves are usually converted into electrical energy by a
device called a wave energy converter (WEC). The electricity generated depends
upon the intensity of the waves. In a traditional way, the motion of a buoy that
occurred in a vertical direction due to waves in water, can be converted into
current generation. Here, the numerical simulation using the Ansys tool is done
to find an optimum design of buoy shape to get maximum energy conversion.
Findings: The simulations have shown that the drag force for the Oval shape
is minimum 0.063 N and the first mode of frequency for the Conical shape is
minimum 165 Hz for Point-Absorber type Wave Energy Converter.
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1 Introduction

The energy demand grew considerably and is even further increasing. Owing to
depletion of fossil fuels and also the emissions caused by the fuels are the major
hurdles for its use Thus, the demand for renewable energy sources is increasing. The
renewable energy source is clean and available abundantly free of cost in nature. The
various available renewable energy sources are wind energy, geothermal energy, solar
photovoltaic and wave energy. The selection of renewable energy source varies from
region to region? depending upon their availability. Ocean energy is consistently
available energy with the highest energy density> throughout the year®. Wave
energy has many advantages available for 24 hours. A number of wave energy devices are
available and research is being done for its commercialization ®. The wave energy can
be converted into electrical energy by various methods as shown in Figure 1 below 720
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Fig 1. Wave energy conversion method

The point absorber is mostly used to harness wave energy. The multiple numbers of WEC ??) can be arranged in rows and
columns to generate good amount of electrical energy. The WEC’s are mainly classified as shown in following Figure 2 (2%,

Cscillating Paoint
water column absorber

Overstopping

Fig 2. Types of Wind Energy Converter (WEC)

In the point absorber system in resonance with incident waves, the amplitude and speed increase and thus transfers the
higher amount of energy *>?%). Thus, wave energy must be considered a promising source of energy supply. There is a need to
find out the suitable devices that are technically feasible and commercially available. The WEC devices that are available require
a great deal of investigation in different areas like structural analysis ?*), fatigue analysis. This analysis can be done using the
Ansys tool which mainly depends upon the wind system (26-2%),

The numerical analysis results obtained from the analysis will help to optimize >3 the components, enhance the
mechanical performance of the components and increase the efficiency of energy conversion. The performance of the buoy
is also an important issue in the design of an oscillating buoy wave energy converter. The power output obtained from the buoy
is the work with which the buoy has done to overcome the force produced by the system. The amount of work transferred by
the buoy to the system is very important. The motion of the buoy depends mainly upon the waves induced.

Thus, this paper focuses on the design and analysis of buoy, from the structural point of view for various buoy geometries
so that the efficiency of device also increases.
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2 Forces Acting on Buoy

'This is the case for the “buoy-type” or “point absorber” 33-39) type of wave energy converter. The buoy will bob up and down on
striking with the incoming waves. Whenever a crest of a wave hits the buoy, the buoy will travel up and when a trough comes,
it will travel down. This linear movement of buoy is converted into electrical energy.

The various approaches to calculate the forces acting on wave given by Muetze *437-3), used are as shown in Figure 3.
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Fig 3. Forces acting on Buoy

A. Selection of Buoy

The buoy is available in various shapes. Based on the previous research by different researchers, we have selected sphere, oval
and cone shape of buoy for analysis.

Virtual Analysis on Ansys Workbench Version 16.0 (Fluent)- Inputs Parameters -

Material= Polyethylene.

Mechanism used = Scotch Yoke.

Fluid used = Water.

Viscosity of Water = 0.0091 poise.

Pressure Difference B/w two waves ends crossing buoy= NA.
Input Velocity of fluid = 1.5 m/s.

Dimensions of Tank (enclosure); L=2.5m; W= 0.5m; H= 0.45m.
Head of water = 30 cm.

Self-Weight of Buoy = NA.

Motor Details = 1 hp single phase DC motor.

RPM = 1440 rpm.

. Iteration Commanded =200

O ® N =

— = =
N = o

1. Oval Shape: Figure 4 shows the geometry of the oval shape used for analysis.
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Fig 4. Geometry for OvalBuoy

Fig 5. Meshing for Oval shape Buoy

The best element for meshing is the tetrahedral element as shown in Figure 5.
Meshing parameters- Aspect ratio = 1.84, Jacobian 0.8, Element quality 0.88.
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Static Pressure (pa) Position Vs Velocity

Fig 6. Static Pressure and Velocity for Oval shape

Figure 6 shows static pressure according to position and the velocity at different positions in the container as static pressure
graph indicates at starting it has higher static pressure as we go forward in the tank pressure get reduced, exactly opposite to
this as to go forward in the tank the velocity of the particle gets increased.
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Fig 7. Displacement Contour of oval shape

Figure 7 shows the modular analysis of an oval buoy. It shows the displacement at various point of the buoy when the first
mode frequency wave is used for simulation.

First Mode: 209.66 Hz

Second Mode: 266.61 Hz

2. Spherical Shape:

Fig 8. Geometry of Spherical buoy

Fig 9. Meshing of Spherical Buoy

Figures 8 and 9 shows the geometry and meshing of Spherical Buoy.
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ANSYS

Static Pressure (pa) Velocity

Fig 10. Static Pressure and Velocity for spherical shape

Figure 10 shows static pressure according to position and the velocity at different positions in the container as static pressure
graph indicates at starting it has higher static pressure as we go forward in the tank pressure get reduced, exactly opposite to
this as we go forward in the tank the velocity of the particle gets increased.

Fig 11. Displacement Contour

Figure 11 shows the modular analysis of a spherical buy. It shows the displacement at various point of the buoy when the
first mode frequency wave is used for simulation.

First Mode:249.68 Hz

Second Mode: 250.47 Hz

3. Conical Shape:

Fig 12. Geometry of Conical Buoy
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Fig 13. Meshing of Conical Buoy

Figures 12 and 13 shows the geometry and meshing of Conical Buoy
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Fig 14. Static pressure and Velocity Vector of conical buoy

Figure 14 shows static pressure according to position and the velocity at different positions in the container. As the static
pressure graph indicates at starting it has higher static pressure as we go forward in the tank pressure get reduced, exactly
opposite to this as we go forward in the tank the velocity of the particle gets increased.

Fig 15. Displacement Contour
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Figure 15 shows the modular analysis of a conical buoy. It shows the displacement at various point of the buoy when the first
mode frequency wave is used for simulation.

First Mode: 165.28 Hz

Second Mode: 165.58 Hz

3 Conclusions

The commercial code in Finite element analysis is used to perform structural calculations to understand the behaviour of three
different buoy geometries when subjected to wave forces. Based on the CFD readings given above, the drag force for the shapes
in increasing order can be seen as follows:

Oval Buoy — Conical Buoy — Spherical Buoy

The drag force for the Oval shape is minimum 0.063 N for Point-Absorber type Wave Energy Converter.

The first two modes of frequencies for all the shapes can be arranged in the increasing order as follows:

Conical Buoy — Oval Buoy — Spherical Buoy

The first mode of frequency for the Conical shape is minimum 165 Hz for Point- Absorber type Wave Energy Converter.

Base on the above two analysis we can say that the oval shape or conical shape buoy are the best to get the optimum energy
conversion. In future work, the performance will be verified in deep sea water with more depth.
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