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Abstract
Objectives: With the reference to the Einstein’s theory of general relativity
(1915), the evaluation of the rotating metrics such as Newman – Penrose Spin
– Coefficients or NP Spin – Coefficients, the Ricci Scalars, the Weyl Scalars are
designedwith a ̸= 0from themass function ormetric function M̂(u,r).Methods:
The methods / analysis adapted are the theoretical and mathematical analysis
on the Einstein’s theory of general relativity. Findings: The Newman – Penrose
Spin Coefficients (NP Spin – Coefficients), the Ricci Scalars, and theWeyl Scalars
for the rotating metrics M̂(u,r) with a ̸= 0 has been evaluated. Given by Wang
andWu (1999), the expanded form of themass function ormetric function with
a ̸= 0 has been used to evaluate the rotatingmetrics – NP Spin – Coefficients, the
Ricci Scalars and the Weyl Scalars for a ̸= 0. The outcome is that the evaluation
of rotating metrics with a ̸= 0 i.e. all the Newman – Penrose Spin Coefficients
(NP Spin – Coefficients), the Ricci Scalars and the Weyl Scalars greatly simplifies
the analysis of the theory of general relativity. Novelty: From the expended
form of the mass function or metric function M̂(u,r) with a ̸= 0 given by Wang
and Wu (1999), all NP Spin – Coefficients, the Ricci Scalars, the Weyl Scalars has
been derived for the option a ̸= 0. This paper evaluates the rotating metrics
with all NP Spin – Coefficients, the Ricci Scalars and the Weyl Scalars with which
greatly simplifies the analysis of the theory of general relativity. Also it is new
way of formulation of the theory of general relativity with a ̸= 0.
Keywords: The Einstein’s theory of general relativity; The mass function or
metric function; The Newman – Penrose Spin - Coefficients (NP Spin –
Coefficients); The Ricci Scalars; The Weyl Scalars.

1 Introduction
The Newman – Penrose Spin – Coefficients (the NP Spin – Coefficients), the Ricci
Scalars, the Weyl Scalars for the rotating metrics with mass function M̂(u,r)or metric
function M̂(u,r) can be written as given below (1,2) :
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The Newman – Penrose Spin – Coefficients or NP Spin – Coefficients with mass function or metric function M̂(u,r) are:

k∗ = σ = λ = ε = 0

ρ∗ =− 1
R̄
,µ∗ =− ∆

2R̄R2

α =
(2ai−Rcosθ)
2
√

2R̄R̄sinθ
,β =

cotθ
2
√

2R

π =
iasinθ√

2R̄R̄
,τ =− iasinθ√

2R2

γ =
1√

2R̄R2

[(
r− M̂− rM̂,r

)
R̄−∆∗]

v =
1√

2R̄R2
i ar · sinθM̂,u

(1)

The actual notations defined as the k∗,ρ∗,µ∗NP Spin – Coefficients k,ρ,µ . The notations defined ascan be respectively treated
as energy density and null density in energy – momentum tensor for the rest of this paper. Now, the Ricci Scalars can be written
as follows (3,4) :

ϕ00 = ϕ01 = ϕ10 = ϕ02 = ϕ20 = 0

ϕ11 =
1

4R2R2

[
4r2M̂,r +R2 (−2M̂,r −rM̂,rr

)]
ϕ12 =

1
2
√

2R2R2

[
iasinθ

{
RM̂,u−rM̂,ru R̄

}]
ϕ21 =

−1
2
√

2R2R2

[
iasinθ

{
R̄M̂,u−rM̂,ru R

}]
ϕ22 =− 1

2R2R2

[
2r2M̂,u+a2rM̂,uu sin2 θ

}]
Λ∗ =

1
12R2

(
2M̂,r +rM̂, rr

)

(2)

TheWeyl Scalars can be written as follows:

φ0 = φ1 = 0

φ2 =
1

R̄R̄R2

{
−RM̂+

R̄
6

M̂,r(4r+2i acosθ)− r
6

R̄R̄M̂,rr

}
φ3 =− iasinθ

2
√

2R̄R̄R2

{
(4r+ R̄)M̂,u+rR̄M̂,u r

}
φ4 =

a2r sin2 θ
2R̄R̄R2R2

{
R2M̂,uu −2rM̂,u

}
(3)

From all the above Newman – Penrose Spin – Coefficients or the NP Spin – Coefficients, we have found that, in general case,
the rotating metrics possess actually a geodesic (k∗ = ε = 0) the shear free (σ = 0), absolutely expanding θ ̸= 0and the non –
zero twist

(
ω∗2 ̸= 0

)
null vector la(Chandrasekhar, 1983) (5,6), where

θ̂ ≡−1
2
(ρ + ρ̄) =

r
R2 ,ω

∗2 ≡−1
4
(ρ − ρ̄)2 =−a2 cos2 θ

R2R2
(4)

And again, the energy momentum tensor for the rotating metric looks like as given below (7,8):

Tab = µlablb +2ρl(anb)+2pm(am̄b)+2ωd(am̄b)+2ω̄l(amb) (5)
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With the following Newman – Penrose Spin – Coefficients or NP Spin – Coefficients are as given below:

µ =− 1
KR2R2

[
2r2M̂,u+a2r sin2 θM̂,uu

]
ρ =

2r2

KR2R2 M̂,r

p =− 1
K

[
2a2 cos2 θ

R2R2 M̂,r +
r

R2 M̂,rr

]
ω =− iasinθ√

2KR2R2

[
RM̂,u−rR̄M̂,ur

]
(6)

All the above Newman – Penrose Spin – Coefficients or NP Spin – Coefficients have the relations with the Ricci Scalars as given
below (9,10)

Kµ = 2ϕ22,Kω =−2ϕ12

Kρ = 2ϕ11 +6Λ,K p = 2ϕ11 −6Λ
(7)

The result actually implies that when we obtain the Ricci Scalars ϕ11,ϕ12,ϕ22as in equation 2 for a given particular the space –
time metric, we will be able to find µ,ρ and p which actually describe the energy momentum tensors.

The expanded form of rotating metrics given by Wang and Wu in 1999 for the rotating mass function M̂(u,r)with the non
– rotating solution (a = 0) in the power of γ as given below:

M̂(u,r) = ∑∞
n=−∞ qn(u)rn (8)

Where qn(u) is an arbitrary function of µ . Wang and Wu considered the given above summation as in integral form when the
spectrum index ’n’ is actually continuous in nature. Using the expression in equation 6, we can generate the rotating metrics
for a ̸= 0 as follows below by replacing the mass function or metric function M̂(u,r) of equation 8 with the help of arbitrary
function qn(u). Thus we can rewrite equation 6 as given below (11,12)

µ =− 1
KR2R2

∞

∑
n=−∞

[
2qn(u),u rn+2 +a2 sin2 θqn(u),uu rn+1]

ρ =
2

KR2R2

∞

∑
n=−∞

(n+2)qn(u)rn+1

p =− 1
KR2

∞

∑
n=−∞

nqn(u)rn−1
[

2a2 cos2 θ
R2 +(n−1)

]
ω =− iasinθ√

2KR2R2

∞

∑
n=−∞

[(R−nR̄)qn(u),urn]

γ =
r√

2R̄R2

∞

∑
n=−∞

[(
1−qn(u)rn−1 −nqn(u)rn−1) R̄−∆∗] , where ∆∗ = r2 −2r

∞

∑
n=−∞

qn(u)rn +a2

v =
iasinθ√

2R̄R2

∞

∑
n=−∞

qn(u),unn+1

α =
(2ai−Rcosθ)
2
√

2R̄R̄sinθ
,β =

iasinθ√
2R̄R̄

,τ =− iasinθ√
2R2

(9)
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The Ricci Scalars can be written as follows (13,14)

ϕ00 = ϕ01 = ϕ10 = ϕ02 = ϕ20 = 0

ϕ11 =
1

4R2R2

∞

∑
n=−∞

qn(u)rn−1 [4nr2 +R2(−2n−n(n−1)]

ϕ12 =
iasinθ

2
√

2R2R2

∞

∑
n=−∞

qn(u),urn(R−nR̄)

ϕ21 =
−iasinθ
2
√

2R2R2

∞

∑
n=−∞

qn(u),urn(R−nR̄)(R̄−nR)

ϕ22 =− 1
2R2R2

∞

∑
n=−∞

rn+1 [rqn(u),u +a2qn(u),u u sin2 θ
]

Λ∗ =
1

12R2

∞

∑
n=−∞

nqn(u)rn−1(n+1)

(10)

TheWeyl Scalars can be written as follows (14,15) :

φ0 = φ1 = 0

φ2 =
1

R̄R̄R2

∞

∑
n=−∞

qn(u)rn−1
{
−Rr+

R̄
6

n(4r+2i acosθ)− 1
6

R̄R̄n(n−1)
}

φ3 =− iasinθ
2
√

2R̄R̄R2

∞

∑
n=−∞

qn(u),urn{(4r+ R̄)+nR̄}

φ4 =
a2r · sin2 θ
2R̄R̄R2R2

∞

∑
n=−∞

rn (qn(u),u u
(
R2 −2rqn(u),u

))
(11)

Hence, all the Newman – Penrose Spin – Coefficients or NP Spin – Coefficients are found above with the condition with
a ̸= 0 from the Mass Function M̂(u,r)with reference to the Theory of General Relativity. This theoretical analysis is ideal for
experimental set up for progress further in the theory of general relativity.

2 Conclusion
With given a start of the rotating metrics with mass function or metric function M̂(u,r), the Newman – Penrose Spin –
Coefficients (NP Spin – Coefficients), the Ricci Scalars, the Weyl Scalars are formulated. From all of the Newman – Penrose
Spin – Coefficients (NP Spin – Coefficients) we found that, in general case, the rotating metrics actually possess qualities like
a geodesic (k∗ = ε = 0), the shear free (σ = 0), absolutely expanding (θ̂ ̸= 0) and a non – zero twist

(
ω∗2 ̸= 0

)
null vector la.

Once we have found the Ricci Scalars, we can always find the energy momentum tensors from the Ricci Scalars. The expanded
form of the rotating mass function or the metric function M̂(u,r) given by Wang and Wu in 1999 is a non – rotating solution
a ̸= 0 in the power of γ .With help of the expanded form ofmass function ormetric function M̂(u,r), we actually have generated
the rotating metrics with a ̸= 0 i.e. all the Newman – Penrose Spin – Coefficients (NP Spin Coefficients), the Ricci Scalars and
the Weyl Scalars. The evaluation the rotating metrics with all NP Spin – Coefficients, the Ricci Scalars and Weyl Scalars with
a ̸= 0 which greatly simplifies the analysis of the theory of general relativity. Also it is new way of formulation of the theory of
general relativity with a ̸= 0.
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