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Abstract
Objectives: To propose a suitable imbalanced data classificationmodel to split
the dataset into two new datasets and to test the created imbalanced dataset
by the prediction models.Methods: The imbalance defect data sets are taken
from the PROMISE library and used for the performance evaluation. The results
clearly demonstrate that the performance of three existing prediction classifier
models, K-Nearest Neighbor (KNN), Naive Bayes (NB), and Back Propagation
(BPN), is very susceptible in terms of unbalance of classification, while Support
Vector Machine (SVM) and Extreme Learning Machine (ELM) are more stable.
Findings: The outcome of this research reveals that applied SVM and ELM
machine learning models improves the performance in defect prediction and
records 29% more than KNN, and 19% more than NB and BPN. Novelty:
According to the findings of a comprehensive study, the proposed machine
learning new classification imbalance impact analysis method outperforms the
existing ones in order to transform the original imbalance data set into a new
data set with an increasing imbalance rate and be able to select models to
evaluate different predictions on the new data set.
Keywords: Software Fault Prediction Model; Imbalance Problem
Classification; Artificial Intelligence; Smart Debugging; Unbalanced
Classification

1 Introduction
Defect prediction is essential in the software field in terms of quality and reliability, and
it is one of the major comparative research areas in the modern software engineering
approach. Numerous defect prediction models have been introduced for the class
imbalance problem by means of the continuous development of machine learning
and data mining. In machine learning, classifiers are created to eliminate errors and
increase accuracy. Classification imbalance has gradually become the current dominant
research hotspot in software engineering. Generally, unbalanced classification refers
to the phenomenon that the sample size distribution among different categories is
unbalanced. For example, in the binary classification problem, when the sample size
of the two categories differs greatly, the classification imbalance problem appears. In
real time, classification imbalance problems are common and need to be addressed to

https://www.indjst.org/ 237

https://doi.org/10.17485/IJST/v15i6.2193
https://doi.org/10.17485/IJST/v15i6.2193
https://doi.org/10.17485/IJST/v15i6.2193
eldhorvs@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Eldho / Indian Journal of Science and Technology 2022;15(6):237–242

maintain quality. The imbalance issues such as text classification, web fault prediction (1), credit card fraud detection (2), High
error rate of classification models etc (3). However, when dealing with the imbalanced data by focusing on prediction model the
traditional classification method becomes inefficient in terms of error rate and accuracy varying for the datasets (4). Traditional
defect prediction techniques mainly target coarse-grained software entities, such as files, modules, or packages for prediction
are discussed and in-depth analysis for prediction models portrayed in cloud environment using deep learning method which
have few drawbacks in transforming the unbalanced dataset (5). SLD approach is proposed by authors using deep learning on
static codes but fails in classification of unbalanced formulated data (6). K-Nearest Neighbor (KNN), Naive Bayes (NB), Back
Propagation (BPN) models are used and compared for defect prediction to find the same defects with different classifiers (7).
Classifiers Compositional C1 level defect prediction is presentedwhere the error rate is highwhich leads tominimal accuracy (8),
CP (Cross Project) defect prediction software model was introduced where it has drawbacks on TP and TN rate analysis (9),
Heterogeneous model and multi-source hinders performance models were proposed for prediction and all these approaches
has drawbacks in transformation of new dataset from old after classifying the imbalanced data and showsminimal accuracy (10).
EnhancedCCFDBdefect predictionmodel was developed using SVM for parameter optimization and discussedmanymethods
to solve the problem of classification imbalance such as sampling methods, including over-sampling and under-sampling (11).

Machine Learning prediction model was utilized for medical datasets for acute organ failure in critical patients (12).
Traditional classification model believes that the misclassification and the SDP model was presented for noise and class
imbalance defects to remove the noisy datas which have drawbacks on high error rate in transformation of unbalanced
dataset (13). Classifier ensemble method for high dimensional data classification was portrayed to overcome the baseline models
which have minimal drawbacks on predicting the imbalanced datas in an optimized manner (14). Some models improve
classification performance by gathering the prediction results ofmultiple data sets. In general, the performance of the integrated
model is better than that of a single model. Although ensemble learning is not proposed to solve the problem of unbalanced
classification, it can achieve better results when dealing with the problem of unbalanced classification. Hybrid predictionmodel
(i.e., classificationmodels) usingDBSCAN andRF, SMOTEwas derived and during the analysis it was found that the FP and FN
rate varies on datasets during different iteration (15). How to choose a reasonable prediction model? In addition, the prediction
model itself may also be affected by the imbalance of classification. Which prediction models have more stable performance? If
we can grasp the performance stability of different predictionmodelswhen the classification is unbalanced, thenwe can choose a
reasonable prediction model in a practical application to better guide the software defect prediction work. The classifier chains
for class imbalance via RS (Random Sampling) were discussed and the analysis was conducted, and it was found that there
was an issue with imbalanced data transformation to a new dataset (16). The CSALB approach is utilised for imbalanced fault
diagnosis by the authors, and here the defect prediction is not efficient in terms of the transformation of the dataset (17). QoS-
IWDARP is also used to find accuracy in network data sets for early route prediction, but it also has a few drawbacks in the
removal of noisy data (18). The authors identified a cost-effective method and created an application for NASA software defects;
this approach has few drawbacks in the knowledge discovery process (19). To improve software testing effectiveness, an AI-based
SDP named Defect Prediction as a Service was created, along with six best defect prediction models (20). Eleven software defect
predictionmodels are identified and compared to improvise the quality and security in software testingwhich provides accuracy
of 80% (21).

The main contribution of this article is to i) introduce a classification imbalance impact analysis method and transform the
original imbalance data set into a new data set with an increasing imbalance rate, and select different prediction models to
predict the new data set to evaluate different predictions. The degree of stability of the prediction model is analyzed when the
classification is unbalanced. ii) Experimentswere carried out on 3 existing typical predictionmodels (KNN,NB, andBPM) and 2
proposedmachine learning and extreme learningmethods (SVM and ELM) to show the stability in classification of unbalanced
data. iii) The performance stability of different existing prediction models (KNN, NB, BPM) is derived in a PROMISE data
library when the classification is unbalanced to showcase the proposed SVM and ELM as reasonable prediction models for
practical applications, which has a certain guiding role for the research of software defect prediction.

The proposed method constructs a new data set with an increasing imbalance rate from the original unbalanced data set and
then selects eight typical classification models as defect prediction models, respectively, for the constructed new data set and
uses ROC (Receiver Operating Characteristic Curve (Area under the Curve). The index is used to evaluate the classification
performance of different prediction models, and at the same time, different coefficients of variation are used to predict
the different coefficients of the prediction model. The experimental results show that the performance of the three existing
prediction models, BPN, NB, and KNN, decreases with the increase of the imbalance rate, indicating that the performance of
these three models is very susceptible to classification imbalance, and that SVM and ELM outperform with high performance
in defect prediction.
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2 Proposed Methodology
In order to make the improvised prediction model, it is necessary to clean the noisy or imbalanced data in the repository. The
quality of datasets is highly essential for experimentation and evaluation. Machine learning methods are highly dominant in
dealing with imbalanced datasets, minimizing error rates and removing noisy datasets from large numbers of datasets. The
proposed SVM and ELM methods aim to evaluate the datasets in the PROMISE library to transform the original imbalanced
datasets into the new ones for imbalanced classification. The preliminary statistical results are shown in Table 1, including the
name (abbreviation) of the prediction model, the method employed, and quotations. KNN, NB, BPN, SVM and ELM defect
prediction models are employed to carry out the experiment.

2.1 Impact of Unbalanced Classification on the Performance of Software Defect Prediction
Models

The number of non-defective samples in the data set is much higher than the number of defective samples, a phenomenon
called unbalanced classification. The data set D = {x1, x2,..., xn}, xi∈ Rd (i = 1, 2, ..., n), which includes a number of samples,
and each sample contains a In addition, it also includes a category feature to mark the category of the sample, i.e., defective
or non-defective. According to the characteristics of the category, the data set can be divided into defective type C1 and non-
defective type C2. The number of samples is n1 and n2, respectively, and n = n1 + n2. As a result, the imbalance rate of the
data set D (Imbalance Ratio) (12) is defined as the ratio of the number of non-defective samples, n2, to the number of defective
samples, n1, which is reduced to IR=(n2/n1). In general, n2 > n1, i.e., IR > 1. The greater the IR value, the greater the degree of
imbalance in the data set classification, and vice versa.

2.2 SVM – Support Vector Machine for unbalanced datasets

A Support Vector Machine (SVM) is a supervised machine learning algorithm that can be used for both classification and
regression challenges. However, it is mostly used in classification problems. In the SVM algorithm, each data item is plotted as
a point in an n-dimensional space (where n is the number of features you have) with the value of each feature being the value
of a particular coordinate to derive the unbalanced data in an optimized manner.

2.3 ELM – Extreme Learning Machine for transformation

In ELM, the number of defects is identified and TP and TN are performed. The transformation of the original imbalanced
dataset is classified into new datasets and used ROC for migration, where the parameters of hidden or noisy are removed.
The imbalanced rate is calculated. The number of defective samples (n1) and the number of non-defective samples (n2) with
size is calculated. The tasks of classification and transformation are accomplished by running extensive tests on imbalanced
classification datasets with various class ratios in the PROMISE data library. A set of data sets with different imbalance rates is
needed in order to explore the impact of classification imbalance on the performance of prediction models. That is, the changes
in the performance of each prediction model in the case of classification imbalance. Therefore, this paper designs a new data set
construction algorithm to transform the original unbalanced data set into a new data set with successively increasing unbalance
rates. The specific process is shown in Algorithm 1.

New Data Set Construction Algorithm
Input: DataSet - The original unbalanced data set
Output: NewDataSet - New data set
1. According to category and characteristics DataSet is divided into DefectSet and NonDefectSet;
2. Number of defective samples n1=DefectSet.Size();
3. Number of non-defective samples n2=Non NonDefectSet.Size();
4. Imbalance rate r=Math.floor(n2/n1);
5. Form newDataSet=DefectSet;
6. Form restNonDefectSet=NonDefectSet;
7. WHILE restNonDefectSet=NonDefectSet;
8. Randomize the restNonDefectSet
9. IF restNonDefectSet.Size() >=2n1
10. choose n1 samples randomly from restNonDefectSet
Save as newDataSet
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11. Remove the selected sample from the restNonDefectSet;
12. ELSE
13. save the remaining sample in restNonDefectSet as new DataSet;
14. restNonDefectSet = null;
15. END IF
16. Save newDataSet;
17. END WHILE
18. RETURN all new datasets as newDataSet;

3 Results and Discussions

Theperformance analysis was conducted against KNN, NB, and BPN (7) with SVM and ELM by using PROMISE datasets in the
Weka tool under the Windows platform to evaluate the performance stability of different prediction models. Software defect
prediction is a two-class classification problem, and its prediction process will produce 2 different results, as shown in Table 2,
where defects are positive cases, and no defects are negative cases. The row represents the actual category, and the column
represents the predicted category. In the forecasting process, it is first necessary to select reasonable indicators to evaluate the
performance of each forecasting model. The area under the ROC curve is used for evaluation.

3.1 Test Dataset

The proposed method selects 2 unbalanced classification data sets. Basic information is shown in Table 1. These data sets are
all defect data sets in the PROMISE library. The first column indicates the name of the dataset, the second column indicates
the development language of the dataset program; the third column indicates the number of features contained in the dataset,
that is, the feature dimension; the fourth column indicates the samples in the dataset total, which describes the size of the data
set, including small-scale (a few hundred), medium-scale (thousands), and large-scale (tens of thousands); the fifth to seventh
columns represent the number of defective samples and non-defective samples in the data set, respectively. The number of
samples and the defect rate; the eighth column represents the unbalance rate of the data set, which is calculated as IR=(n2/n1).
That is, the ratio of the number of samples with no defects to the number of samples with defects is an integer. The larger the
value, themore unbalanced the classification of the data set. Jedit-4.3 and Tomcat are open source data sets, and the features they
contain are class-level CK metrics, which comprehensively consider the inheritance, coupling, and cohesion in object-oriented
programs and also measured the correlation between software features and defects.

Table 1. Experimental Dataset
Dataset
Name

Lan-
guage

Number of
Features

Number of
Samples

Number of
Defective Samples

Number of
non-Defective Samples

Defect
Rate (%)

Imbalance
Rate

Jedit-4.3 Java 20 492 11 481 2.24 43
Tomcat Java 20 858 77 781 8.97 10

The prediction result is jointly determined by the data set and the prediction model. For a certain data set, which includes
many software features, all these features are used to train the prediction model when feature selection is not performed. All the
features in the above data set are used to train the new machine learning prediction model. In order to explore the difference
in performance stability of different prediction models, KNN, NB, and BPN with SVM and ELM are compared in performance
analysis (7).

3.2 Comparison of Performance Stability of Different Prediction Models

A binary classification problem, such as fault-prone (positive) and not fault-prone (negative), has four possible prediction
outcomes: True Positive (TP) (i.e., correctly classified positive instance), False Positive (FP) (i.e., negative instance classified
as positive), True Negative (TN) (i.e., correctly classified negative instance), and False Negative (FN) (i.e., positive instance
classified as negative).The four values form the basis for several other performancemeasures that arewell known and commonly
used for classifier evaluation. Overall Accuracy (OA) provides a single value that ranges from 0 to 1. It can be calculated by the
equation,OA= (|TP| + |TN|)/N,whereN represents the total number of instances in a dataset.While overall accuracy facilitates
model performance comparisons, it is not always regarded as a reliable performancemetric, particularly in the presence of class
imbalance. The area under the ROC (receiver operating characteristic) curve is a single-value measurement that originated in
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the field of signal detection. The value of the AUC ranges from 0 to 1. The ROC curve describes the trade-off between True
Positive Rate (TPR) TPR = TP/(TP+FN) and False Positive Rate (FPR) FPR = FP/(FP+TN). A classifier that provides a large
area under the curve is preferable to a classifier with a smaller area under the curve. The TPR (True Positive Rate) refers to the
ratio of the number of correctly predicted positive cases to the actual number of positive cases, that is, the ratio of the number of
correctly predicted defective samples to the actual number of defective samples. The FPR (False Positive Rate) refers to the ratio
of the number of false positive cases to the actual number of negative cases; that is, the ratio of the number of falsely predicted
defective samples to the actual number of non-defective samples.

For a specific prediction model and training data set, the prediction result corresponds to a point on the ROC curve. By
adjusting the threshold of the model, a curve passing through (0, 0) and (1, 1) can be obtained below the curve. The area of A
is the value of A. In particular, the value range of AT is 0 to 1. When AT is 0.5, it represents the performance of the random
guessing model. The larger the value of A, the better the performance of the model. Therefore, a good prediction model should
be as close as possible to the upper left corner of the coordinate system. Use the predictionmodels presented in (7), namely KNN,
NB, BPN, and the data set Jedit and Tomcat, to conduct combined experiments. First, select a data set, and use Algorithm 1 to
transform the data set into a new data set with an increasing imbalance rate (ie, IR = 1, 2, ..., r); then, use the prediction models
to predict the new data set separately to obtain a set of AT values under different imbalance rates, which are recorded as the
set S={AUC1, AUC2,..., AUCr; Finally, through the Coefficient of Variation (CV) of this group of AT values, to evaluate the
performance stability of different prediction models under different imbalance rates.

hows the experimental results of each prediction model on different data sets, including the mean µ , standard deviation
σ , and coefficient of variation CV. The larger the coefficient of variation (CV) shows, the more unstable performance of the
prediction model, which has a greater impact of imbalance in classification on the performance of the prediction model.

Table 2. Evaluation Results
Prediction
Models

Jedit Tomcat
Mean(µ) Std(σ ) CV Mean(µ) Std(σ ) CV

Existing SDPModels
KNN (7) 0.513 0.021 1.710 0.582 0.024 2.135
NB (7) 0.524 0.021 1.902 0.621 0.026 2.102
BPN (7) 0.581 0.022 1.903 0.624 0.053 2.821

Proposed SDPModels
SVM 0.612 0.012 2.102 0.734 0.021 6.031
ELM 0.721 0.020 2.204 0.768 0.032 7.875

It can be seen from Table 2 that the SVM, and ELM three prediction models have relatively high CV values on both
datasets, indicating that the performance of these proposedmodels is highly stable to the imbalance of classificationwhereas the
performance of models such as KNN, NB, and BPN (7) is low compares to SVM and ELM. In addition, the sample distribution
differences between different data sets will also affect the performance of the prediction model to a certain extent. Therefore,
the performance of the same model on individual data sets may be different from the performance on other data sets. For
example, the KNN model only shows a slight instability on the Jedit data set (the CV value is 1.71%), while the BPN model
only shows obvious instability on the Jedit data set (the value of CV is 1.903%), because the number of defective samples in this
data set is too small. Whereas the KNN, NB, and BPN (7) model performs little better in Tomcat dataset. This makes the initially
constructed new data set too small, which affects the performance stability of the prediction model. SVM and ELM shows the
stability in SDP for both Jedit and Tomcat datasets.

Finally, there are external factors, such as the quality of the data set, which may affect the evaluation of the stability of
the predictive model’s performance by the methods used in this paper. Therefore, more sufficient experiments on data sets of
different scales, different defect rates, and different imbalance rates ensure that all experimental data sets are real data sets in
defect prediction and are also the most commonly used defect data sets to ensure the validity and reliability of the prediction
results.

4 Conclusion
The research study proposed a new model with machine learning techniques such as SVM and ELM to classify the imbalanced
data in the PROMISE library to evaluate the software defect prediction. This method transforms the original unbalanced data
set into a new set of data sets with an increasing unbalance rate, and then selects a typical prediction model to predict and
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evaluate the new data set, respectively. The experimental results show that new defect prediction machine learning techniques
SVM and ELM outperform KNN, NB, and BPN in terms of imbalance rate and data classification. SVM records 29% more
than KNN up to 2.102 and ELM records 19% more than NB and BPN up to 2.204 towards Jedit and 6.031 and 7.035 towards
Tomcat. The limitations of the study lie in the fact that the prediction and classification accuracy level might vary depending
on the datasets. In the future, the model can be improvised to predict the faulty data in large datasets in an optimized manner
as software quality and reliability are the main concerns in the modern software engineering era.
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