
         
            
               
                  Journal Information

                  
                     Publisher: Sciresol
                     

                     Title: Indian Journal of Science and Technology
                     

                     ISSN (electronic): 0974-5645
                     

                     ISSN (print): 

                  

               

               
                  Article Information

                  
                     Copyright: 2022
                     

                     Date received: 18 February 2022
                     

                     Date accepted: 16 March 2022
                     

                     Volume: 15
                     

                     Issue: 16
                     

                     DOI: 10.17485/IJST/v15i16.2250
                     

                     Funding: None
                     

                  

               

            

         

         

         
            
               A Middleware Model for SQL to NoSQL Query Translation 
               
            

         

         
                     
                           Basant Namdeo[1]

                     Email: basant_nd@yahoo.com

                     
                           Ugrasen Suman[2]


         
            
                  
               Assistant Professor, International Institute of Professional Studies, Devi Ahilya University
               Indore
               India
               
            

            
                  
               Professor, School of Computer Science and IT, Devi Ahilya University
               Indore
               India
               
            

         

         Corresponding Author: Basant Namdeo
         

         
            Abstract

            
               
Objectives: To propose a suitable model for RDBMS SQL to NoSQL query translation, which works as a middleware between legacy applications
                  and the NoSQL database. This model is expected to translate the SQL queries into NoSQL queries, and forward them to the NoSQL
                  database for execution, and after the execution, the result received from NoSQL should be transferred to the legacy application.
                  Methods: The proposed model is implemented in Java programming language for MySQL (RDBMS) to MongoDB document database query translation.
                  The prototype translates the insert, update, delete, and select SQL queries into equivalent NoSQL query format for MongoDB
                  document database. The middleware transforms the SQL queries to NoSQL query format, and returns the result to the legacy application,
                  which they are expecting from the database. Performance of our model has been evaluated by executing SQL queries such as select,
                  insert, update, delete (with simple and join queries) in Studio 3T, UnityJDBC driver for MongoDB, and our model SQL-No-QT. Findings: The study shows that the proposed model SQL to NoSQL Query Translation Model (SQL-No-QT) performs better in some cases. This
                  model takes 7.5% less time compared to Studio3T, and 38.19% less time compared to UnityJDBC driver in executing select queries,
                  and 78.82% less time compared to Studio3T in executing delete queries in big size database. This model also can execute the
                  join SQL queries for insert, update and delete, which are not available in UnityJDBC driver for MongoDB. Novelty: This model works as a middleware between a legacy application and a NoSQL database, and it removes the need of developing
                  whole new software for legacy application. 
               

            
         

         
            Keywords

            Database reengineering, database, Query translation, NoSQL, RDBMS

         

         

      

      
         
               Introduction

            NoSQL is the term mainly used for the group of databases that do not follow the relational database model. Many companies
               developed their own product for such categories of databases, such as Amazon developed DynamoDB, Google developed Bigtable,
               Apache developed Cassandra, etc. Various types of NoSQL databases software 1. High performance, scalability, and availability are the key characteristics of NoSQL databases 2.
            

            NoSQL gives the freedom to define the database schema at runtime. Users can change the database schema as and when it is required,
               and it supports the big data too. Big data is the term or field in computer science that defines the large volume of structured
               or unstructured data. It may be received from the different number of sources in a very speedy way. It has three types of
               key concepts, i.e., volume, variety, and velocity (3 V’s of big data) 3. Initially, many organizations used RDBMS as database software for their application and other software. Latter, due to the
               rapidly growing database size because of business expansion, they have found that RDBMS databases are not able to fulfill
               their requirement. So they need to migrate their database to new database technology like NoSQL. 
            

            Leonardo et al. 4 presented a NoSQLayer framework, which supports the migration from relational to NoSQL DBMS. This framework has been divided
               into two parts; the first one is the data migration module and the second one is data mapping. Data migration module has been
               used for the migration of relational data into NoSQL data, and for that, it used Java metadata API to retrieve the table information
               of relational database objects. The data mapping module provides an abstraction layer between the application software and
               DBMS, which translates the SQL queries into NoSQL query format. They have built a mediator using MySQL proxy and a mapping
               module, which translates the SQL query into NoSQL query format and sends back the result received from NoSQL to the application
               software.
            

            There is no common standard language available for interacting with NoSQL database systems. Typically, each NoSQL database
               software vendor provides its own query language API for interacting with its NoSQL database. So, the user has to program for
               a specific NoSQL database, and thus it reduces the portability. Many researchers have worked on this problem, proposed different
               middleware and translators for SQL to NoSQL. Zhang et al. 5 presented a Nomiddleware architecture which translates the SQL queries into NoSQL specific query, and forwards the result
               back to client application. 
            

            A hybrid database access layer has also been presented by some of the researchers. A hybrid database design with a relational
               database (RDB) and a NoSQL database supported by a data adapter system has been presented by Liao et al.6 They provided a seamless technique for using RDB and NoSQL databases simultaneously with this data adaptor technology. Data
               adapter can read data from RDB or NoSQL, depending on the availability of data. Li et al. 7 also presented an integration model of relational databases and NoSQL data stores called MSI (multiple sources integration).
               This MSI interacts with both the relational and NoSQL database. Users can send the SQL queries to the MSI, and then it is
               translated to native NoSQL query for execution. SQL queries in this model can use both the NoSQL and relational database table
               in a single SQL query. 
            

            Ha et al.8 have also discussed an approach to translate SQL queries from MySQL to MongoDB NoSQL database. They discussed four phases,
               first for parsing the incoming SQL queries, second phase for creating the dictionary of query parts, third phase for updating
               the dictionary for matching structure target database. This phase also determined the structure of the target database MongoDB.
               In the last fourth phase, a final query is generated by the process of checking the joining of each part in the dictionary.
               They only considered the select query for a translation task.
            

            Some other types of query translation works have also been done by various researcher such as, SQL to XQuery translation 9, EOL (model-level queries) to SQL 10, SimpleSQL relational layer which works between application and SimpleDB 11, NoSQL2 which translate the administrative command of SQL such as truncate table, create table, etc. into NoSQL specific
               command 12 . 
            

            Therefore, query translation from SQL to NoSQL databases has become a challenging domain of research. The new NoSQL database
               has come with its own query language for querying the database. Various new approaches and techniques have been proposed and
               evaluated for this purpose. The above literature survey reveals that query translation from SQL to NoSQL databases is an important
               part for those organizations which are planning to transform their business data from RDBMS to NoSQL and still want to run
               old application software. Various authors’ proposed different methods for it, but the main focus of them are on converting
               simple select statement only. After studying the above literature, we have found that a major research gap is, most of the
               authors have only worked on the conversion of a simple select statement, and not on insert, update and delete query. To fill
               this research gap, we have proposed a model which considers the translation of insert, update and delete query with join statement,
               along with the simple select statement. 
            

            In this paper, we have proposed a middleware model SQL to NoSQL Query Translation Model (SQL-No-QT) for an automatic solution
               to the problem of SQL query translation to NoSQL (MongoDB) database. The paper is organized in the following way. Section
               2 explains the proposed query translation model and algorithm. Experimental analysis is carried out for different database
               sizes with our proposed query translation models, which is discussed in Section 3. Finally, Section 4 presents the conclusion
               of this paper.
            

         

         
               SQL to NoSQL Query Translation Model (SQL-No-QT

            This query translation model is proposed as a middleware layer to provide a solution for legacy applications to work with
               the new NoSQL database without changing the database logic. This middleware layer works between the legacy application and
               the JDBC driver of the MongoDB database.
            

            The architecture of the proposed model is presented in Figure  1. The model consists of five components; namely, lexical analyzer, syntax analysis or parser, query code generator, data dictionary,
               and result formatter. The legacy application sends the SQL queries to the model and receives the output from the model.
            

            
                  
                  Figure 1

                  SQL to NoSQL Query Translation Model (SQL-No-QT)

               
[image: https://typeset-prod-media-server.s3.amazonaws.com/article_uploads/2e25b082-3a48-458a-a9d6-c21128b9f979/image/b3e7c8e3-4eba-419a-80ad-914e7c8b53b6-uimage.png]

            The first component of the model, lexical analyzer, or say tokenizer receives the SQL (insert, update, delete and select)
               queries as input from the legacy software. Then, with the help of the data dictionary, it finds the tokens from the SQL string.
               Tokens can be keywords such as select, from, where , insert etc., or delimiters such as ,(comma), or identifiers such as table
               names, field names etc., or operators such as +(plus), - (minus) ,< (less than), > (greater than) , <= (less than or equal
               to), >= (greater than or equal to), != (not equal to) etc., or constant such as any number / string.
            

            A syntax analyzer will be used as the second component of the model. It receives the string of tokens from the lexical analyzer
               and checks the syntax of the SQL queries by using grammar. Grammar for the simple select, insert, update and delete SQL statement
               can be defined as given in Table  1, Table  2, Table  3, Table  4  respectively.
            

            
                  
                  Table 1

                  
                     Select Statement Grammar
                     
                  

               

               
                     
                        
                           	
                              
                           
                            <SelectQuery>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            SELECT <SelFieldList> FROM <fromTableList>[ INNER JOIN <TableName> ON <joinCondition>] [ WHERE <condition> ][ GROUP BY <groupFieldList>
                              [HAVING <condition> ]] [ ORDER BY <SortFieldList> [ DESC | ASC ] ]
                           

                           
                        
                     

                     
                           	
                              
                           
                            <SelFieldList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <Field> | <AggreFunc> [, SelFieldList >]

                           
                        
                     

                     
                           	
                              
                           
                            <AggreFunc>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            AVG(<Field>) | COUNT(<Field>) | COUNT(DISTINCT <Field>) | MAX(<Field>) | MIN(<Field>) | SUM(Field>)

                           
                        
                     

                     
                           	
                              
                           
                            <fromTableList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <TableName> [,<fromTableList>]

                           
                        
                     

                     
                           	
                              
                           
                            <condition>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <condition> | <condition> and <condition> | <conditon> or <condition> | <Field><operator><Field> | <Field> in <SelectQuery>

                           
                        
                     

                     
                           	
                              
                           
                            <operator>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            < | > | <= | >= | !=

                           
                        
                     

                     
                           	
                              
                           
                            <joinCondition>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            < joinCondition > | < joinCondition > and < joinCondition > |  < joinCondition > or < joinCondition > | <Field><operator><Field>

                           
                        
                     

                     
                           	
                              
                           
                            <SortFieldList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <Field> | <AggreFunc> [ , <SortFieldList> ]

                           
                        
                     

                  
               

            

            
                  
                  Table 2

                  Insert Statement Grammar
                  

               

               
                     
                        
                           	
                              
                           
                            <InsertQuery>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            Insert into <TableName> [(FieldList)] [ [VALUES (<ValueList>)] | [<SelectQuery>] ]

                           
                        
                     

                     
                           	
                              
                           
                            <ValueList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            constant [,<ValueList>]

                           
                        
                     

                     
                           	
                              
                           
                            <FieldList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <Field> [ ,FieldList> ]

                           
                        
                     

                  
               

            

            
                  
                  Table 3

                  Update Statement Grammar
                  

               

               
                     
                        
                           	
                              
                           
                            <UpdateQuery>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            Update <TableName> Set <AssignmentList>[<TableName> INNER JOIN <TableName> ON <joinCondition>] [ WHERE <condition> ]

                           
                        
                     

                     
                           	
                              
                           
                            <AssignmentList>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            <Field> = Value[, <AssignmentList>]

                           
                        
                     

                  
               

            

            
                  
                  Table 4

                  Delete Statement Grammar
                  

               

               
                     
                        
                           	
                              
                           
                            <DeleteQuery>

                           
                        
                        	
                              
                           
                            =>

                           
                        
                        	
                              
                           
                            Delete [ [<TableName>] from [<TableName> INNER JOIN <TableName> ON <joinCondition>] ] | [from <TableName> ] [ WHERE <condition>
                              ]
                           

                           
                        
                     

                  
               

            

            The output of the syntax analyzer is a parsed statement, which creates the various objects of select, insert, update and delete
               queries. The next part of the model is Query Code Generator. Here, in this phase objects that belong to different SQL queries
               (select, insert, update and delete), received from the previous phase, are passed to different modules for query code generation
               for the target NoSQL database. Here, an equivalent query is generated for its corresponding SQL query. Suppose, there are
               relational tables as discussed in 13. So, we can translate our SQL queries into NoSQL MongoDB query format as shown in Table  5. Here, we take two types of SQL queries for each select, insert, update and delete SQL query, one for a single table and
               the other for two tables (e.g. join, etc.)
            

            

            
                  
                  Table 5

                  
                     SQL to NoSQL query equivalent
                     
                  

               

               
                     
                        
                           	
                              
                           
                           
                              Select Query 
                              
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           Select stu_rollno, stu_name from StudMast where stu_rollno = 101010  

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast.find({stu_rollno:101010},{stu_rollno:1,stu_name:1}) 

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           select StudMast.stu_rollno,StudMast2020.s_name from StudMast inner join StudMast2020 on StudMast.stu_rollno = StudMast2020.s_no
                              where StudMast.stu_rollno = 101010
                           

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast.aggregate([ {"$project":{

                           
                           "_id": NumberInt(0),

                           
                           "StudMast":"$$ROOT"

                           
                           }},

                           
                           { "$lookup":{

                           
                           "localField":"StudMast.stu_rollno",

                           
                           "from":"StudMast2020", "foreignField":"s_no",

                           
                           "as":"StudMast2020" }

                           
                           },

                           
                           {

                           
                           "$unwind":{

                           
                           "path":"$StudMast",

                           
                           "preserveNullAndEmptyArrays":false

                           
                           }},

                           
                           {

                           
                           "$match":{

                           
                           "StudMast.stu_rollno": 101010

                           
                           }

                           
                           },

                           
                           {

                           
                           "$project":{

                           
                           ".StudMast.stu_rollno":"$StudMast.stu_rollno",

                           
                           “StudMast2020.s_name”:"$StudMast2020.s_name"

                           
                           }

                           
                           }]);

                           
                        
                     

                     
                           	
                              
                           
                           
                              Insert Query 
                              
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           insert into StudMast(stu_rollno, stu_name) values(101010, “Mahesh”)  

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast.insertOne( {stu_rollno:101010, stu_name: “Mahesh”}) 

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           Insert into StudMast (stu_rollno, stu_name) select s_no, s_name from StudMast2020 

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast2020.find().forEach(function(doc){ 

                           
                           db.StudMast.insertOne({stu_rollno:doc.s_no, stu_name: doc.s_name}) 

                           
                           }) 

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           
                              Update Query 
                              
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           update StudMast set stu_name = “Ramesh” where stu_rollno = 101010  

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast.updateMany({stu_rollno:101010}, {$set:{ stu_name: “Ramesh”}}) 

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           Update StudMast set stu_name = StudMast2020.s_name from StudMast inner join StudMast2020 on StudMast.stu_rollno = StudMast2020.s_no
                              
                           

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast2020.find.forEach(function(doc){

                           
                           db.StudMast.updateMany({stu_rollno:doc.s_no}, {$set:{stu_name:doc.s_name}})

                           
                           })

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           
                              Delete Query 
                              
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           Delete from StudMast where stu_rollno = 101010 

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast.deleteMany({stu_rollno:101010}) 

                           
                        
                     

                     
                           	
                              
                           
                           

                           
                        
                        	
                              
                           
                           

                           
                        
                     

                     
                           	
                              
                           
                           SQL 

                           
                        
                        	
                              
                           
                           delete StudMast from StudMast inner join StudMast2020 on StudMast.stu_rollno = StudMast2020.s_no where cur_termno = 1 

                           
                        
                     

                     
                           	
                              
                           
                           NoSQL 

                           
                        
                        	
                              
                           
                           db.StudMast2020.find({cur_termno:1}).forEach( doc){ db.StudMast.deleteMany({stu_rollno:doc.s_no}) }

                           
                        
                     

                  
               

            

            

            The translated NoSQL query is then forwarded to the NoSQL database driver for execution. Result received from the NoSQL database
               driver after execution is then forwarded to the Result Formatter module, which is responsible for converting the result into
               the format that the legacy application is expecting from the database. 
            

            In the next part of this section, we describe the algorithm of the query code generator module of the model.

            Algorithm: Query Translation - parsedStatement - parsed object for SQL statement.
            

            Output: NoSQLCmd – A NoSQL command
            

            
               Begin
               
            

               var cmdType = parsedStatement.commandType;
            

               var NoSQLCmd;

            
                  if cmdType= “select” then
               
            

            
                  Begin
               
            

                  NoSQLCmd = Call getSelectCmd(parsedStatement);
            

            
                  End
               
            

            
                  else if cmdType= “insert” then
               
            

            
                  Begin
               
            

                  NoSQLCmd = Call getInsertCmd(parsedStatement);
            

            
                  End
               
            

            
                  else if cmdType= “update” then
               
            

            
                  Begin
               
            

                  NoSQLCmd = Call getUpdatetCmd(parsedStatement);
            

            
                  End
               
            

            
                  else if cmdType = “delete” then
               
            

            
                  Begin
               
            

                  NoSQLCmd = Call getDeleteCmd(parsedStatement);
            

            
                  End
               
            

               return NoSQLCmd;
            

            
               End Algorithm ;
               
            

            The above algorithm receives the parsed statement as input from the previous phase of the model i.e. parser. We have used
               JsqlParser 14 as a parser for SQL queries. This algorithm first checks its command Type property of the parsed Statement object, and according
               to its property value, calls a separate function or module for select, insert, update and delete SQL queries. Algorithms for
               select, insert, update and delete queries modules are defined separately in getSelectCmd, getInsertCmd, getUpdateCmd, and
               getDeleteCmd function respectively as follows. Each function then returns the converted NoSQL query command. This NoSQL query
               command is then forwarded to the NoSQL database driver. The result received from the NoSQL database driver is then forwarded
               to the Result Formatter module, which simply converts the JSON result received from the NoSQL database driver into Tabular
               format. This tabular format data is then sent back to legacy software.
            

            function getSelectCmd (parseStatement)
            

            
               Begin
               
            

                  var cmd ;
            

                var selectCmd = parseStatement.selectCmd;

                if selectCmd.fromTable.count = 1 then //Only One Table in Select Command

                  Begin

                     var fromTable1 = selectCmd.fromTables[0];

                     var selectList = selectCmd.selectList.getPropertyValueList();

                     var whereList = selectCmd.whereList.getPropertyValueList();

                     cmd = “db.”+fromTable1 + “.find({“+whereList+”},{“+selectList+”})”;

                  End

                  else // more than 1 tables are in Select Command

                  Begin

                     var fromTable1 = selectCmd.fromTables[0];

                     var fromTable2 = selectCmd.fromTables[1];

                     var project1, project2, lookup, unwind, match ;

                     project1 = " ’_id’: NumberInt(0), ‘ ”+fromTable1+” ’: ’$$ROOT’ ";

                     lookup = “ ‘localField’ : ‘ “+fromTable1+ ”.“ + fromTable1.joinFieldName+” ’, “;

                     lookup+= “ ‘ from’: ‘”+fromTabl2+” ’, ‘foreignField’:’ “ + fromTable2.joinFieldName+” ’, ”;

                     lookup+ =” ‘as’:’ ” +fromTable2+” ’ “;

                     unwind = “ ’path’: ‘$”+fromTable1+” ’, ‘preserveNullAndEmptyArrays’:false ”;

                     match = selectCmd.whereList;

                     project2 = selectCmd.selectList;

                     cmd = “db.” + fromTable1 + “.aggregate([{‘$project’ : {”+ project1+ “}},”;

                     cmd + = “ { ‘$lookup’ : {” + lookup + “}},”;

                     cmd + = “ { ‘$unwind’ : {” + unwind + “}},”;

                     cmd + = “ { ‘$match’ : {“ + match +”}},”;

                     cmd + = “ { ‘$project’ : {“ + project2 +”}}])”;

                  End

                  return cmd;

            
               End getSelectCmd;
               
            

            function getInsertCmd(parseStatement)
            

            
               Begin
               
            

               var cmd;

               var insertCmd = parseStatement.insertCmd;

               if insertCmd.table.count= 1 then // Only one table in insert command

               Begin 

                     var tableName = insertCmd.table[0];

                     var columnList = insertCmd.columnList;

                     var insertData = insertCmd.valueList;

                     cmd = “db.”+tableName+”.insertMany(“+insertData+”)”;

               End

               else // more than 1 tables are in Insert Command

               Begin

                     var selectTable = insertCmd.table[1];

                     var insertTable = insertCmd.table[0];

                     var propertyValueList= “”;

                     cmd = “db.”+selectTable+ “.find().forEach(function(doc){”;

                     cmd+=“db.”+insertTable+ “.insertOne({ “ ;

                     for(var x = 0 ; x< selectTable.selectList.count;x++)

                     Begin

                        propertyValue+=insertTable.getProperty[x] + “:doc.” + selectTable.getProperty[x]+”,”

                     End

                     propertyValue.removeLastChar();

                     cmd+=propertyValue+”})”;

                     cmd+=”)”;

               End

            
               End getInsertCmd;
               
            

            function getUpdateCmd(parseStatement)
            

            
               Begin
               
            

               var cmd;

               var updateCmd = parseStatement.updateCmd;

               if updateCmd.table.count= 1 then // Only one table in update command

               Begin 

                     var tableName = updateCmd.table[0];

                     var whereList = updateCmd.whereList.getPropertyValueList();

                     var updateData = updateCmd.setList.getPropertyValueList();

                     cmd = “db.”+tableName+”.updateMany({“+whereList+”},{“+updateData+”})”;

               End

               else // more than 1 tables are in Update Command

               Begin

                     var jTable = updateCmd.table[1];

                     var uTable = updateCmd.table[0];

                     var propertyValueList=””;

                     var joinedConditionList = “”;

                     var conditionList= “”, normalCondition= “”;

                     cmd = “db.”+jTable+ “.find().forEach(function(doc){”;

                     cmd+=”db.”+uTable+”.updateMany({“;

                     /*Creating Where Condition*/

                     for(var x = 0 ; x< jTable.conditionList.count; x++)

                     Begin

                        joinedConditionList+=uTable.getProperty[x] + “:doc.” + jTable.getProperty[x]+”,”

                     End

                     joinedConditionList.removeLastChar();

                     normalCondition = uTable.whereList.getPropertyValueList();

                     conditionList = normalCondition + “,” + joinedConditionList ; 

                     cmd+=conditionList+”},{”;

                     /*Creating Update Set List*/

                     for(var x = 0 ; x< jTable.updateList.count; x++)

                     Begin

                        propertyValue+=uTable.getProperty[x] + “:doc.” + jTable.getProperty[x]+”,”

                     End

                     cmd+=propertyValue+”})”;

                     cmd+=”)”;

               End

            
               End getUpdateCmd;
               
            

            function getDeleteCmd(parseStatement)
            

            
               Begin
               
            

               var cmd;
            

               var deleteCmd = parseStatement.deleteCmd;

               if deleteCmd.table.count= 1 then // Only one table in delete command

               Begin 

                     var tableName = deleteCmd.table[0];

                     var whereList = deleteCmd.whereList.getPropertyValueList();

                     cmd = “db.”+tableName+”.deleteMany({“+whereList+”})”;

               End

               else // more than 1 tables are in delete Command
            

               Begin

                     var jTable = updateCmd.table[1];

                     var dTable = updateCmd.table[0];

                     var joinedConditionList= “”;

                     var jconditionValue = “”;

                     jcondition = jTable.whereList.getPropertyValueList();

                     cmd = “db.”+jTable+ “.find({“+jcondition+”}).forEach(function(doc){”;

                     cmd+= “db.”+dTable+ “.deleteMany({“;

                     for(var x = 0 ; x< jTable.whereList.count; x++)

                     Begin

                        joinedConditionList+=dTable.getProperty[x] + “:doc.” + jTable.getProperty[x]+”,”

                     End

                     normalCondition = dTable.whereList.getPropertyValueList();

                     conditionList = normalCondition + “,” + joinedConditionList ; 

                     cmd+=conditionList+”})}”

               End

            
               End getDeleteCmd;
               
            

         

         
               Results and Discussion

            In order to test the validity and performance of the proposed model, we have developed a prototype using the Java programming
               language. A screenshot of the prototype is shown in Figure  2 . We have used MongoDB as a NoSQL database in the model and JSqlParser 14 as a parser for SQL queries. JSqlParser is an open-source library that translates SQL queries into the hierarchy of Java
               classes like Select, Insert, Update, Delete, etc. These classes have various methods and properties for getting the where
               conditions, table names, order by values of various classes. 
            

            
                  
                  Figure 2

                  Java Program Screen Shot NetBeans IDE forSQL-No-QT
                  

               
[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/86684468-70f8-4731-83ee-b805cbc5199eimage2.png]

            Qualitative comparison of our SQL to NoSQL query translation model (SQL-No-QT Model), and other frameworks is shown in Table  6. This qualitative comparison covers main features such as SQL query supported, database used, and methodology used by various
               techniques or frameworks.
            

            
                  
                  Table 6

                  
                     Comparison of various methods
                     
                  

               

               
                     
                        
                           	
                              
                           
                            

                           
                        
                        	
                              
                           
                            SQL Query Supported

                           
                        
                        	
                              
                           
                            Database

                           
                        
                        	
                              
                           
                            Methodology

                           
                        
                     

                     
                           	
                              
                           
                            NoSQLayer [4]
                           

                           
                        
                        	
                              
                           
                            select, insert, update, delete ( join not allowed in insert, update and delete)

                           
                        
                        	
                              
                           
                            MongoDb

                           
                        
                        	
                              
                           
                            ---

                           
                        
                     

                     
                           	
                              
                           
                            MSI [7]
                           

                           
                        
                        	
                              
                           
                            select, insert, update, delete ( join not allowed in insert, update and delete)

                           
                        
                        	
                              
                           
                            Document Type (No Specific) Only Framework

                           
                        
                        	
                              
                           
                            Map Reduce

                           
                        
                     

                     
                           	
                              
                           
                            Studio 3T 

                           
                        
                        	
                              
                           
                            select with join

                           
                        
                        	
                              
                           
                            MongoDB

                           
                        
                        	
                              
                           
                            ---

                           
                        
                     

                     
                           	
                              
                           
                            UnityJDBC

                           
                        
                        	
                              
                           
                            select, insert, update, delete ( join not allowed in insert, update and delete)

                           
                        
                        	
                              
                           
                            MongoDB

                           
                        
                        	
                              
                           
                            MongoDB Java Library

                           
                        
                     

                     
                           	
                              
                           
                            SQL-No-QT Model

                           
                        
                        	
                              
                           
                            select, insert, update, delete with join

                           
                        
                        	
                              
                           
                            Document Type, MongoDB

                           
                        
                        	
                              
                           
                            Direct Query Translation

                           
                        
                     

                  
               

            

            Here, in quantitative analysis, two types of database size are considered in terms of the number of records for checking the
               performance of the model. The first database has approximately 0.4 million records, and the second database has approximately
               more than 1 million records. Performance of the executing SQL queries such as select, insert, update, delete (with simple
               and join queries) in Studio 3T 15, UnityJDBC16, 17 driver for MongoDB and our model is shown in Figure  3, Figure  4, Figure  5, Figure  6 respectively. Currently Studio 3T is not supporting insert, update and delete SQL queries, so we executed the native NoSQL
               query in Studio 3T for them. This model takes 7.5% less time compared to Sudio3T, and 38.19% less time compared to UnityJDBC
               driver in executing select queries, and 78.82% less time compared to Studio 3T in executing delete queries in big size database.
               It also takes 1.25% less time compared to Studio 3T in executing insert join query, and UnityJDBC is not supporting the join
               in insert query.
            

            
                  
                  Figure 3

                  Performance Analysis (Select Query).
                  

               
[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/86684468-70f8-4731-83ee-b805cbc5199eimage3.png]

            
                  
                  Figure 4

                  Performance Analysis (Insert Query).
                  

               
[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/86684468-70f8-4731-83ee-b805cbc5199eimage4.png]

            
                  
                  Figure 5

                  Performance Analysis (Update Query).
                  

               
[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/86684468-70f8-4731-83ee-b805cbc5199eimage5.png]

            
                  
                  Figure 6

                  Performance Analysis (Delete Query).
                  

               
[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/86684468-70f8-4731-83ee-b805cbc5199eimage6.png]

            After analyzing the results of different SQL queries execution times in the different databases, it is observed that SQL to
               NoSQL Query Translation Model (SQL-No-QT) performs better in some cases such as simple query in big data, join delete query
               in big data in terms of the number of time taken to perform SQL query translation and getting the result back from the database.
               It is also observed that the proposed model performs better for large database sizes too, and from the comparison shown in
               Table  6, it is observed that, our model can also perform the task of translation of insert, update, and delete queries with join
               statements, which are not supported by other tools or models.
            

         

         
               Conclusions

            This study has proposed an SQL to NoSQL query translation model, which can be used as middleware between the NoSQL database
               and legacy application. A model SQL-No-QT is presented here, which efficiently converts its SQL queries into NoSQL queries
               and forwards them to the NoSQL database driver for execution. After executing the queries, it sends back the result to legacy
               software through the result formatter module of the model. This model has five components; namely, lexical analyzer, syntax
               analysis or parser, query code generator, data dictionary, and result formatter. It takes the SQL queries as input from the
               legacy software. This model efficiently translates the set of SQL queries into NoSQL queries, specifically for the MongoDB
               database. It gets the result from the NoSQL database, and that result is forwarded to the legacy application in the format
               required by it. The study shows that the proposed model SQL to NoSQL Query Translation Model (SQL-No-QT) performs better in
               some cases. This model takes 7.5% less time compared to Sudio3T, and 38.19% less time compared to UnityJDBC driver in executing
               select queries, and 78.82% less time compared to Studio3T in executing delete queries in big size database. This model also
               can execute the join SQL queries for insert, update and delete, as compared to UnityJDBC and Studio 3T.
            

         

      

      
         
               References

            
                  
                  
                     
                        1 
                              

                     

                     Namdeo, Basant & Suman, Ugrasen,   (2020). Performance Analysis of Schema Design Approaches for Migration from RDBMS to NoSQL Databases. Advances in Data and Information Sciences, 94, 413–424.
                     

                  

                  
                     
                        2 
                              

                     

                     Namdeo, Basant & Suman, Ugrasen,   (2021). A Model for Relational to NoSQL database Migration: Snapshot-Live Stream Db Migration Model. In: 2021 7th International
                        Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore, India.   IEEE. (pp. 199–204) 
                     

                  

                  
                     
                        3 
                              

                     

                     Patel, Angira Amit, Dharwa, Jyotindra,  & ,   (2017). Graph Data: The Next Frontier in Big Data Modeling for Various Domains. Indian Journal of Science and Technology, 10(21), 1–7.
                     

                  

                  
                     
                        4 
                              

                     

                     Rocha, Leonardo, Vale, Fernando, Cirilo, Elder, Barbosa, Dárlinton & Mourão, Fernando,   (2015). A Framework for Migrating Relational Datasets to NoSQL 1. Procedia Computer Science, 51(1), 2593–2602.
                     

                  

                  
                     
                        5 
                              

                     

                     Zhang, Chao & Xu, Jing,   (2018). A Unified SQL Middleware for NoSQL Databases. Proceedings of the 2018 International Conference on Big Data and Computing, 14–23.
                     

                  

                  
                     
                        6 
                              

                     

                     Liao, Ying-Ti, Zhou, Jiazheng, Lu, Chia-Hung, Chen, Shih-Chang, Hsu, Ching-Hsien, Chen, Wenguang, Jiang, Mon-Fong & Chung,
                        Yeh-Ching,   (2016). Data adapter for querying and transformation between SQL and NoSQL database. Future Generation Computer Systems, 65, 111–121.
                     

                  

                  
                     
                        7 
                              

                     

                     Li, C & Gu J,   (2019). An integration approach of hybrid databases based on SQL in cloud computing environment. Software: Practice and Experience, 49, 401–423.
                     

                  

                  
                     
                        8 
                              

                     

                     Ha, Muon & Shichkina, Yulia,   (2021). The Query Translation from MySQL to MongoDB Taking into Account the Structure of the Database. In: 2021 IEEE Conference
                        of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). St. Petersburg, Moscow, Russia.   IEEE. (pp. 383–386) 
                     

                  

                  
                     
                        9 
                              

                     

                     Ali, A & Ibrahim, M,   (2017). NoSQL Database Query Generation using an Automated Approach. Artificial Intelligence Mod Syst, 1(1), 32–41.
                     

                  

                  
                     
                        10 
                              

                     

                     X, De Carlos, Sagardui, G & Trujillo, S,   (2014). MQT, an approach for runtime query translation: From EOL to SQL. In: Brucker,  AD, Dania, C, Georg, G & Gogolla,
                        M (Eds.), CEUR Workshop Proceedings. Dania C, Georg G, Gogolla M.   (pp. 13–22) 
                     

                  

                  
                     
                        11 
                              

                     

                     Calil, Andre & Mello, Ronaldo Dos Santos,   (2012). SimpleSQL: A Relational Layer for SimpleDB. In: European Conference on Advances in Databases and Information Systems.
                        Berlin, Heidelberg.   Springer, Berlin, Heidelberg. (pp. 99–110) 
                     

                  

                  
                     
                        12 
                              

                     

                     Adriana, Jane & Holanda, Maristela,   (2018). NoSQL2: SQL to NoSQL Databases. In: Advances in Intelligent Systems and Computing. Naples, Italy.   Springer International Publishing. (pp. 938–948) 
                     

                  

                  
                     
                        13 
                              

                     

                     Namdeo, Basant & Suman, Ugrasen,   (2021). Schema design advisor model for RDBMS to NoSQL database migration. International Journal of Information Technology, 13(1), 277–286.
                     

                  

                  
                     
                        14 
                              

                     

                        Jsqlparser - Home.  http://jsqlparser.sourceforge.net/

                  

                  
                     
                        15 
                              

                     

                       The Professional Client, IDE & GUI for MongoDB | Studio 3T.  https://studio3t.com/

                  

                  
                     
                        16 
                              

                     

                       UnityJDBC - Multiple Database SQL Querying, Reporting, Development, Virtualization.  https://www.unityjdbc.com/

                  

                  
                     
                        17 
                              

                     

                     Lawrence, R,   (2014). Integration and Virtualization of Relational SQL and NoSQL Systems Including MySQL and MongoDB. In: 2014 International
                        Conference on Computational Science and Computational Intelligence. Las Vegas, NV, USA.   IEEE. (pp. 285–90) 
                     

                  

               

            

         

      

      

   EPUB/nav.xhtml

    
      


      
        		
          Content
        


      


    
  

