
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 11-12-2021
Accepted: 04-02-2022
Published: 28-05-2022

Citation: Gnanaprakasam R,
Hamid IS (2022) Gamma coloring of
Mycielskian graphs. Indian Journal
of Science and Technology 15(20):
976-982. https://doi.org/
10.17485/IJST/v15i20.2324
∗
Corresponding author.

gnanam.rgp@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2022 Gnanaprakasam
& Hamid. This is an open access
article distributed under the terms
of the Creative Commons
Attribution License, which permits
unrestricted use, distribution, and
reproduction in any medium,
provided the original author and
source are credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Gamma coloring of Mycielskian graphs

R Gnanaprakasam1∗, I Sahul Hamid2

1 Lecturer in Mathematics, Tamilnadu Government Polytechnic College (Autonomous),
Madurai11, India
2 Assistant professor in Mathematics, The Madura College (Autonomous), Madurai-11, India

Abstract
Background:Given a graph G, the gamma coloring problem seeks for a proper
coloring C of Gwith the property that there exists a dominating set of G inwhich
all the vertices receive different colors under the coloring C. The minimum
number of colors required for a gamma coloring of G is called the gamma
chromatic number of G and is denoted by χγ(G). Our aim is to find the gamma
chromatic number of Mycielskian graphs. Methods: Here, we obtain gamma
coloring forMycielskian graph µ(G) froma gamma coloring of G by generalizing
the give gamma coloring of G. To prove χγ (µ(G))≤ m for a graph G, we gave a
gamma coloring to µ(G) using m colors. To prove χγ (µ(G)) = m for a graph G,
we first proved that χγ (µ(G)) ≥ m and then gave a gamma coloring to µ(G)

using m colors. Finding: In this paper, we have initiated a study on Gamma
coloring for Mycielskian graph µ(G) of a given graph G. We have proved that,
the gamma chromatic number χγ for µ(G) is either χγ (G) or χγ (G)+1 and thus,
we classify the class of all connected graphs into two classes namely Class-1 and
Class-2 graphs. Graphs G for which χγ (µ (G)) = χγ (G) are of Class-1 and rest of
the graphs are of Class-2. Conditions under which a graph G becomes Class-1/
Class-2 have been established. Novelty: One can investigate towards finding
a structural characterization of graph G with χγ (µ (G)) = χγ (G) or χγ (µ (G)) =

χγ (G) + 1. Gamma coloring is a new variation of graph coloring in which the
concepts of coloring and domination are linked using the condition that the
coloring admits a dominating set in which every vertex receives different colors
and, in this paper, we study about the gamma coloring of Mycielskian graph
µ(G) of a graph G.
Keywords: Coloring; Dominating Set; Colorful Set; Mycielskian Graphs;
Gamma Coloring

1 Introduction
All graphs considered in this paper are connected, simple, finite and undirected graphs.
A coloring of a graph G is a function fromV(G) to a set of colors which assigns different
colors to adjacent vertices.Theminimumnumber of colors needed for a proper coloring
of G is called the chromatic number of G and is denoted by χ(G). A proper coloring of
G using χ(G) colors is called a χ− coloring of G. A subset U of V(G) is said to be a
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dominating set of G if every vertex of V(G) is either in U or has a neighbor in U.The minimum cardinality of a dominating set
of G is called the domination number of G and is denoted by γ(G). A γ−set is a dominating set with cardinality γ(G).

A subset U of V(G) is said to be a total dominating set of G if every vertex of V(G) has an adjacent vertex in U.Theminimum
cardinality of a total dominating set of G is called the total domination number of G and is denoted by γt(G).

Let C be a proper coloring of a graph G. A subset U of V(G) is said to be C-colorful if every vertex of U receives different
color under the coloring C. A subset U of V(G) is said to be color transversal with respect to the coloring C if U intersects
every color class of the coloring C. The study of a graph theoretical parameter in Mycielskian construction of graphs is one of
the interesting research fields in graph theory. Some of such studies are Dominator coloring of Mycielskian graphs (1), strong
coloring of Mycielskian graphs (2), connectivity of Mycielskian graphs (3,4), packing coloring of Mycielskian graphs (5), total
chromatic number of Mycielskian graphs (6), diameter of Mycielskian of graphs (7), total weight choosability of Mycielskian
graphs (8) and Hamilton-connected Mycielskian graphs (9,10). In this paper we define the notion of gamma coloring and discuss
about gamma coloring of Mycielskian graphs.

2 Gamma Coloring of graphs
In this section, we introduce the notion of gamma coloring of a graph along with an example.

Definition 2.1: A proper coloring C of a graph G is said to be a gamma coloring of G if there exists a dominating set which
is C-colorful.The gamma chromatic number χγ (G)is the minimum number of colors needed for a gamma coloring. A gamma
coloring that uses χγ (G)colors is called a minimum gamma coloring (or) a χγ−coloring of G.

Remark 2.2: Certainly, for any graphG, the trivial coloring (that assigns distinct colors to distinct vertices) serves as a gamma
coloring of G to which the whole vertex set V(G) is a colorful dominating set. Therefore, every graph admits a gamma coloring
and so the parameter χγ (G) is well-defined for all graphs.

Fig 1. A Graph G with

Example 2.3: Consider the graphG shown in Figure 1. It is clear that, χ (G)= 2 and γ (G)= 2.Therefore, χγ (G)≥ 2. Further,
sinceC = ((w1, w2, w3, w4, w5, w6,w8} ,(w7, w9}} and S = (w7, w9} is the only dominating set of Gwith cardinality 2 which
is not C-colorful, it follows that χγ (G) ̸= 2 and thus χγ (G) ≥ 3. Also, C = ((w1, w2, w3, w4, w5, w6,w8} ,(w7},{w9}} is a
coloring of G to which (w7, w9} is a colorful dominating set so that C is a gamma coloring of G and hence χγ (G) ≤ 3. Thus,
χγ (G) = 3.

Suppose C is a χγ−coloring of a graph G with a colorful dominating set D. Then D has at most χγ (G) vertices so that
γ(G)≤ (D| ≤ χγ (G). It is also certain that χγ (G)≥ χ(G) and thus we have the following observation.

Observation 2.4: For any graph G, we have χγ (G)≥ Max(γ (G) , χ(G)} .

3 Gamma Chromatic number of Mycielskian graphs
In this section we discuss about the gamma coloring of Mycielskian graph µ (G) of a graph G. For the sake of completeness let
us recall the definition of Mycielskian graph of a graph G.

Definition 3.1: Let G be a graph with vertex set V = {v1,v2, . . . ,vn}, edge set E and let V
′
=

(
v
′
1,v

′
2, . . . ,v

′
n

}
. The

Mycielskian graph µ(G) of G, is the graph with vertex set V (µ (G)) = V ∪ V
′ ∪ {u} and edge set E (µ (G)) = E ∪

(v′iv j/viv j ∈ E
}
∪
(

uv
′
i/v

′
i ∈V ′

}
. The vertex v

′
i is called the twin vertex of viand u is called the root vertex of µ(G). The

Mycielskian graph of P4 is given in Figure 2.
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Fig 2.Mycielskian graph of P4

It has been proved in (11) that, the chromatic number of µ (G) is always χ(G) + 1and in (12) that, the domination number
of µ (G) is γ(G) + 1. However, in the case of gamma coloring, we have the following result.

Theorem 3.2: For any graph G, χγ (µ (G)) = χγ(G) or χγ (µ (G)) = χγ (G)+1.
Proof: Consider a gamma coloring f1 of G using χγ(G) colors with a colorful dominating set D1. Let us give a gamma

coloring g1 to µ(G) using χγ(G) + 1 colors as follows. Define g1 (vi) = g1

(
v
′
i

)
= f1(vi) and assign a new color to the root

vertex u. We first prove that g1 is a proper coloring of µ(G). Let eεE(µ (G)). Then e = viv j or e = v′iv j or e = uv′i. If e = viv j
or e = v′iv j, then viv j ∈ E (G) which implies that f1(vi) ̸= f1(v j) and hence g1(vi) ̸= g1(v j). If e = uv′i, then g1(vi) ̸= g1(u)
as g1(u) is a new color. Thus g1 is a proper coloring. Certainly, D1 ∪ (u} is a dominating set of µ(G) as D1 is a dominating set
of G. Since g1 (vi) = f1(vi) for all vi ∈V and D1 is a f1- colorful set in G, it follows that D1 ∪{u} is a g1- colorful set in µ(G).
Thus D1 ∪{u} is a colorful dominating set of µ(G) and therefore µ (G) has a gamma coloring using χγ (G)+ 1 colors and
hence χγ (µ (G))≤ χγ(G)+1.

Let us now prove that, χγ (G)≤ χγ (µ (G)). Consider a minimum gamma coloring g2 of µ (G) using χγ (µ (G)) colors
with a colorful dominating set S. We obtain a gamma coloring f2 to G using χγ (µ (G)) colors as follows. Define f2 (vi) =

g2

(
v
′
i

)
i f v

′
i ∈ S and f2 (vi) = g2 (vi) otherwise. Let us first show that f2 is a proper coloring of G. Let viv j ∈ E (G).

Then, viv j, v
′
iv j, viv

′
j ∈ E (µ (G)). If v

′
i, v

′
j ̸∈ S, then g2 (vi) ̸= g2 (v j) as viv j ∈ E (µ (G)) and hence f2 (vi) ̸= f2 (v j). If v

′
i ∈ S

and v
′

j ̸∈ S, then g2

(
v
′
i

)
̸= g2(v j) as v′iv j ∈ E (µ (G)) and hence f2(vi) ̸= f2(v j). If v′i ̸∈ S and v′ j ∈ S, then g2(vi) ̸= g2(v′ j)

as v′iv′ j ∈ E (µ (G)) and hence f 2(vi) ̸= f2(v j). If v′i,v′ j ∈ S, then as S is colorful, g2(v′i) ̸= g2(v′ j) and hence f2(vi) ̸= f2(v j).
Thus, whenever we have viv j ∈ E (G) , we have f2(vi) ̸= f2(v j) and hence f2 is a proper coloring of G.

Let D2 = (vi ∈V (G)/vi ∈ S or v′i ∈ S}. Let us claim that D2 is a colorful dominating set in G. We first verify that D2 is a
dominating set of G. Let v j ∈V −D2. Then, v j ̸∈ S. Since S is a dominating set in µ (G), either there exists a vertex vi ∈ S such
that viv j ∈ E (µ (G)) or there exists a vertex v′i ∈ S such that v′iv j ∈ E (µ (G)). In either case, we have, vi ∈ D1 and viv j ∈ E (G).
Therefore, D2 is a dominating set in G. Let vi, v j ∈ D2. Then v′i, v′ j ∈ S or v′i∈ S, v′ j ̸∈ S or v′i ̸∈ S, v′ j ∈ S or v′i, v′ j ̸∈ S. If
v′i, v′ j ∈ S, then g2(v′i) ̸= g2(v′ j) as S is colorful in µ (G) and hence f2(vi) ̸= f2(v j) . If v′i ∈ S and v′ j ̸∈ S, then v′i,v j ∈ S and
as S is colorful in µ (G), g2(v′i) ̸= g2(v j) and hence f2(vi) ̸= f2(v j). If v′i ̸∈ S and v′ j ∈ S, then vi,v′ j ∈ S and as S is colorful
in µ (G), g2(vi) ̸= g2(v′ j) and hence f2(vi) ̸= f2(v j). If v′i, v′ j ̸∈ S, then vi,v j ∈ S and as S is colorful in µ (G), g2(vi) ̸= g2(v j)
and hence f2(vi) ̸= f2(v j). Thus D2 is a colorful dominating set and therefore G has a gamma coloring using χγ (µ (G))
colors and hence χγ(G)≤ χγ (µ (G))which implies that χγ(G)≤ χγ (µ (G))≤ χγ (G)+1. Thus χγ (µ (G)) is either χγ(G) or
χγ (G)+1. n

In view of Theorem 3.2, the set of all connected graphs can be classified into two groups namely Class-1 graphs and Class-
2 graphs. Class-1 graphs consist of all connected graphs G with χγ (µ (G)) = χγ(G) whereas Class-2 graphs consist of all
connected graphs Gwith χγ (µ (G)) = χγ (G)+1.The following proposition shows that each of these classes contains infinitely
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many members.
Proposition 3.3 : Letk ≥ 3 be an integer. Then
(i) There exists a graph G such that χγ (G) = k and χγ (µ (G)) = k.
(ii) There exists a graph H such that χγ (H) = k and χγ (µ (H)) = k+1.
Proof: For the given k ≥ 3, we construct a required graph G as follows.
Consider a star graph on k vertices with v1, v2, . . . ,vk−1 as pendent vertices and w as the center vertex. Now, attach exactly

two pendent vertices at each of v1, v2, . . . ,vk−1 and label them as shown in Figure 3. Let us first show that χγ (G) = k.

Fig 3. A graph G with

Clearly
(
{v1}, {v2}, . . . ,{vk−1}, {w, u1,u2, . . . ,u2k−2}

}
{v1, v2, . . . ,vk−1} χγ(G) ≤ k. χγ(G) ≥ k. γ (G) = k −

1{v1, v2, . . . ,vk−1}γ − setthe colorful dominating set D.(D| ≥ γ (G) = k−1. (D| ≥ k,
If (D| = k− 1, then D = {v1, v2, . . . ,vk−1}. Since w is a neighbor to all the vertices in D which is colorful, we need a new

color for w and hence at least k colors are required for a gamma coloring of G and therefore, χγ(G)≥ k. Thus, χγ (G) = k.
Now, we prove that χγ (µ (G)) = k. By Theorem 3.2, χγ (µ (G))≥ χγ(G) and hence χγ (µ (G))≥ k. Let us obtain a gamma

coloring of µ (G)with k colors. Consider the coloring ((v1, u} , (v2, v′1,v′2} , (v3,v′3} , . . . ,(vk−1,v′k−1} , (w, u1,u2, . . . ,u2k−2, w′, u′1,u′2, . . . ,u′2k−2}}.
Clearly, it is a gamma coloring of µ (G) using k colors in which {v1, v2, . . . ,vk−1, w′} is a colorful dominating set and therefore,
χγ (µ (G))≤ k. Thus, χγ (µ (G)) = k = χγ (G).
Complete graphs on k vertices serve the purpose as proved inTheorem 3 7.
The following theorem provides a necessary and sufficient condition for a graph G in terms of µ (G) to be of Class-2 graph.
Theorem 3.4 : χγ (µ (G)) = χγ (G)+ 1 if and only if there is a χγ−coloring of µ (G) admitting a colorful dominating set

containing the root vertex u.
Proof: Suppose there is a χγ−coloring f of µ (G) admitting a colorful dominating set D containing u. Let c = f (u). Now, let

us give a gamma coloring g to G using χγ (µ (G))−1 colors as follows. Define h(vi) = f (v′i) if v′i ∈ D and define h(vi) = f (vi)

otherwise. Also, define S = { vi ∈V (G)/vi ∈ D or v
′
i ∈ D}. Then by the second part in the proof ofTheorem 3.2, h is a gamma

coloring of G with S as a colorful dominating set. Note that the color c is not used by any of the vertex in S for if v′i ∈ D, then
h(vi) = f

(
v
′
i

)
̸= f (u) = c and if v′i ̸∈ D and vi ∈ D, then u,vi ∈ D. Since D is f-colorful, we have h(vi) = f (vi) ̸= f (u) = c.

Suppose that h(vi) = c for some i. Then, vi,v′i ̸∈ D. Now, recolor the vertex vi such that h(vi) = f
(

v
′
i

)
̸= c. The coloring h is

still a proper coloring of G because of N (v′i)∩V (G) = N (vi)∩V (G). Repeat the above process of recoloring until h(vi) ̸= c
for all i. Thus, we have a proper coloring h of G using χγ (µ (G))− 1 colors in which S is a colorful dominating set. Hence
χγ (G)≤ χγ (µ (G))−1 which implies that χγ (G)+1 ≤ χγ (µ (G)) and byTheorem 3.2, χγ (µ (G)) = χγ (G)+1.

Conversely, let us assume that χγ (µ (G)) = χγ (G)+1. Consider a gamma coloring f of G using χγ (G) colors with a colorful
dominating set D. By similar argument as in the first part of Theorem 3.2, we can give a gamma coloring h to µ (G) with
χγ (G)+1 colors in which u is in a colorful dominating set which completes the proof.

Theorem 3.4 is helpful in proving certain families of graph are of Class-2. For example, paths, cycles and complete graphs
are of Class-2 as shown below.

Theorem 3.5: Path graphs are of Class-2.
Proof: Let Pn = (v1,v2, . . . ,vn) . It is clear that γ (Pn) =

( n
3

⌉
. Also, it has been proved in (5) that for a graph G, γ (µ (G)) =

γ (G)+ 1 and therefore γ (µ(Pn)) =
( n

3

⌉
+ 1. Hence by Observation 2.4, χγ(µ(Pn)) ≥ γ (µ(Pn)) =

( n
3

⌉
+ 1. So, in view of

Theorem 3.4, it is enough to obtain a gamma coloring C of µ(Pn) using
( n

3

⌉
+ 1 colors with the property that there is a C-
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colorful dominating set of µ(Pn) containing the root vertex u. We do it in the following cases. Let v
′
i be the twin vertex of vi in

µ(Pn) and u be the root vertex of µ(Pn).
Case 1: n ≡ 0 (mod 3).
In this case, n = 3k for some natural number k and

( n
3

⌉
+1 = k+1 . Let us give a gamma coloring C to µ(Pn) using k+1

colors as follows.
Let V1 = (v2, v′2, v4, v′4}∪

(
v3 j, v′3 j : 2 ≤ j ≤ k

}
,

V2 = (v1, v′1, v3, v′3, v5, v′5}∪
(
v3 j−2, v′3 j−2 : 3 ≤ j ≤ k

}
,

Vi = (v3i−1, v′3i−1} for all 3 ≤ i ≤ k andVk+1 = (u} .
Clearly C = (V1, V2, . . . ,Vk+1} is a proper coloring of µ(Pn). The coloring of µ(P6) is illustrated in Figure 4. Moreover,

as D = (v2, v5, . . . ,v3k−1} is a dominating set of Pn, S = D ∪ {u} is a dominating set of µ(Pn). Also, S ∩Vi = (v3i−1} for
i ∈ {1,2, . . . ,k} and S∩Vk+1 = (u}. Thus S is C- colorful dominating set of µ(Pn) which implies that χγ(µ(Pn)) ≤ k+1 and
hence χγ(µ(Pn)) = k+1. ThusC is a χγ - coloring of µ(Pn) with a colorful dominating set S containing u as desired.

Fig 4. Gamma coloring of with 3 colors

Case 2: n ≡ 1 or 2 (mod 3).
In this case n = 3k− 1 or n = 3k− 2 for some natural number k and

( n
3

⌉
+ 1 = k+ 1 . Let us give a gamma coloring C to

µ(Pn) using k+1 colors as follows. Let

V 1 =

 (
v2, v

′
2, v4, v

′
4

}
∪
(
v3 j−3, v′3 j−3 : 3 ≤ j ≤ k

}
∪ (v3k−1,v′3k−1} i f n = 3k−1n f ce by o e 1roved in [5(

v2, v
′
2, v4, v

′
4

}
∪
(
v3 j−3, v′3 j−3 : 3 ≤ j ≤ k

}
i f n = 3k−2,

V2 = (v1, v′1, v3, v′3, v5, v′5}∪
(
v3 j−2, v′3 j−2 : 3 ≤ j ≤ k−1

}
,

Vi = (v3i−1, v′3i−1} for all 3 ≤ i ≤ k−1,

Vk =
(
v3k−2, v′3k−2

}
andVk+1 = (u} .

ThenC = (V1, V2, . . . ,Vk+1} is a proper coloring of µ(Pn). Moreover, asD= (v2, v5, . . . ,v3k−4, v3k−2} is a dominating set of
Pn, S = D∪{u} is a dominating set of µ(Pn). Also, S∩Vi = (v3i−1} for i ∈ {1,2, . . . ,k−1}, S∩Vk = (v3i−2} and S∩Vk+1 = (u}.
Thus, S isC- colorful dominating set of µ(Pn) which implies that χγ(µ(Pn))≤ k+1 and henceχγ(µ(Pn)) = k+1. ThusC is a
χγ - coloring of µ(Pn) with a colorful dominating set S containing u as desired.

By a similar argument we can prove the following theorem for cycle graphs.
Theorem 3.6: Cycle graphs are of Class-2.
Theorem 3.7: Complete graphs are of Class-2.
Proof: Let v1,v2, ..,vn be the vertices of Kn. It is clear that χ(Kn) = n. Also, it has been proved in (12) that for a graph G,

χ (µ (G)) = χ (G) + 1 and therefore χ (µ (Kn)) = n+ 1. Hence by Observation 2.4, χγ(µ(Kn)) ≥ χ (µ(Kn)) = n+ 1. In
view ofTheorem 3.4, it is enough to obtain a gamma coloring for µ(Kn) using n+1 colors admitting a colorful dominating set
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containing the root vertex u. Let v
′
i be the twin vertex of vi in µ(Kn). LetVi = (vi, v′i} for all 1≤ i≤ k, andVk+1 = (u}. As vi and

v′i are not adjacent in µ(Kn), it is clear thatC = (V1, V2, . . . ,Vk+1} is a proper coloring of µ(Kn). Also, S = {v1,v2, ..,vn, u } is a
dominating set of µ(Kn). Clearly, S∩Vi = {vi} for all 1≤ i≤ k and S∩Vk+1 = {u} so that S is a colorful dominating set of µ(Kn).
HenceC is a gamma coloring of µ(Kn) with n+1 colors which implies that χγ (µ (Kn))≤ n+1 and thus χγ (µ (Kn)) = n+1.
Therefore, C is a χγ - coloring of µ(Kn) admitting a colorful dominating set S containing u. Thus, by Theorem 3.4, it follows
that, complete graphs are of Class-2.

Theorem 3.4 provides a condition for a graph G to be of Class-2 graph in terms ofminimum gamma coloring of µ (G). In the
following theorem, we obtain a sufficient condition for a graph G to be of Class-1 graph in terms of minimum gamma coloring
G.

Theorem 3.8 : If a graph G has a χγ (G)−coloring
(

V1, V2, . . . ,Vχγ (G)

}
with the following properties.

(i) There exists a positive integer m such that N[v] is not a color transversal for every vertexv ∈Vm.
(ii) There exists a colorful total dominating set D such that D∩Vp = ϕ for some p ̸= m.
Then χγ (µ (G)) = χγ (G) .

Proof: Let G has a χγ (G)−coloring
(

V1, V2, . . . ,Vχγ (G)

}
with the given properties and let f be the corresponding coloring

function. For each vi ∈Vm, being N[vi] is not a color transversal, there exists j such that N (vi]∩Vj = ϕ and let cvi be the color
used to color the vertices of Vj. Let k be the color used to color the vertices of Vm. Let us give a gamma coloring h to µ (G)
using χγ (G) colors as follows. Define h(vi) = f (vi) for all vi ∈V , h(v′i) = f (vi) if vi ̸∈Vm and define h(v′i) = cvi if vi ∈Vm and
h(u) = k. Let us first prove that, h is a proper coloring of µ (G). Let e ∈ µ (G). Then e = viv j or e = v′iv j or e = uv′i. If e = viv j,
then viv j ∈ E (G) which implies that f (vi) ̸= f (v j) and hence h(vi) ̸= h(v j). If e = v′iv j, then viv j ∈ E (G) which implies that
f (vi) ̸= f (v j). If vi ̸∈Vm, then h

(
v
′
i

)
= f (vi) ̸= f (v j) = h(v j). If vi ∈Vm, then by the selection of cvi , the color cvi is not used

by adjacent vertices of vi and therefore f (v j) ̸= cvi
. Thus, we have h

(
v
′
i

)
= cvi ̸= f (v j) = h(v j). Clearly, from the definition

of h, h
(

v
′
i

)
̸= k for all v′i ∈V ′. If e = uv′i then h(u) = k ̸= h

(
v
′
i

)
and hence h is a proper coloring.

Let ud ∈Vp and D
′
= D∪{u′d}. Since D is a total dominating set, for every vi ∈V there exists v j ∈ D such that vi is adjacent

to v j and therefore v′i is adjacent to v j which implies that D dominates V and V ′. Also, u is dominated by u′d . Hence D′ is
a dominating set of µ (G). Since h(vi) = f (vi) for all vi ∈ Vand D is f−colorful in G, we have D is h−colorful in µ (G).
Also, in µ (G), u′d receives the color used by the color class Vp and D∩Vp = ϕ which implies that D′ is colorful. Thus µ (G)
admits a coloring using χγ (G) colors in which a dominating set D′ is colorful. Hence χγ (µ (G))≤ χγ (G) and byTheorem 3.2,
χγ (µ (G)) = χγ (G) .

Remark 3.9: The converse of Theorem 3.8 is not true. For example, consider the graph G shown in Figure 5 which is the
graph constructed as in Proposition 3.3 (i) with k=3. From the construction of the graph, it is clear thatχγ (G) = 3 = χγ (µ (G)).
Consider a χγ -coloring C={V1, V2,V3} of G. Let D be a C-colorful total dominating set. Clearly, | ≤ χγ (G) = 3But {v1, v2, w}
is the only total dominating set with at most three elements. Hence D= (v1, v2, w} is the only C - colorful total dominating set.
Since D uses all the three colors of C, there does not exist a color classVp with D∩Vp = ϕ

Fig 5. A counter example to the converse of Theorem 3.8
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4 Conclusion
We have initiated a study on Gamma coloring for Mycielskian graph µ(G) of a given graph G.We have proved that the gamma
chromatic number χγ for µ(G) is either χγ (G) or χγ (G)+ 1 and thus the class of all connected graphs is classified into two
classes namely Class-1 and Class-2 graphs. Graphs G for which χγ (µ (G)) = χγ (G) are of Class-1 and the rest of graphs are of
Class-2. Conditions under which a graph G becomes Class-1/ Class-2 have been established by which some families of Class-1
/ Class-2 graphs have been characterized.There are still scopes for further research on this topic. For instance, the following are
some interesting problems.

(1)Theorem 3.4 provides a necessary and sufficient condition under which a graph falls in Class-2; however, it does not infer
about the structure of those graphs. So, it is worthy finding a structural characterization of Class-1/ Class-2 graphs.

(2) Characterize trees which are of Class-1/ Class-2.
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