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On Bounds of Non-Deficient Numbers

Uma Dixit1∗

1 Department of mathematics, University postgraduate college secunderabad, Osmania
university, Hyderabad, 500003, Telangana, India

Abstract
Objectives: To improve the upper bounds of a quasi perfect number and
give an important result on its divisibility with primes. Methods: A positive
integer n is quasi perfect if σ (n) >2n + 1, where σ (n) denotes the sum of the
positive divisors of n. However, the existence of a quasi perfect number, which
is a Non-Deficient number, is still an open problem. We use R(n), the sum of
the reciprocals of distinct primes dividing the quasi perfect number, to derive
lemmas and improve the bounds obtained by earlier authors. Findings: We
improve the upper bounds for R(n), when n is quasi perfect with gcd (15, n) = 3
or gcd (15, n) = 5. As a consequence, we establish that a quasi perfect number,
if exists, is divisible by both 3 and 5 or by none of them. Novelty: The unique
method of using R(n) also resulted in finding an important result that 3, 5 and
7 cannot divide any quasi perfect number.
Mathematics Subject Classification: 11A05, 11A25
Keywords: non-deficient number; quasi perfect number; sum of the divisor;
sum of the reciprocal; bounds of perfect number; number of divisors.

1 Introduction
let σ (n) denote the sum of the positive divisors of n. It is well-known that a positive
integer n is said to be abundant, perfect or deficient according as σ (n) > 2n, σ (n) =
2n or σ (n) < 2n. One can see that the set of abundant numbers as well as the set of
deficient numbers are both infinite. In fact, the numbers of the form 2k.3 with k > 1
are all abundant, while every prime is deficient. But it is not known whether the set of
perfect numbers is infinite or not.

Cattaneo (1) has called a positive integer n quasi perfect if σ (n) = 2n + 1. It is not
known whether such numbers exist at all. Abbott, Kishore and Cohen (2–5) have made
significant contributions to the study of quasi perfect numbers. In 1978, Kishore (4)

used the inequality 2−10−12 < σ (N)/N< 2 +10−12 and proved that there are no odd
perfect numbers, no quasi perfect numbers and no odd almost perfect numbers with
five distinct prime factors, proving ω(n) ≥ 6, where w(n) denotes number of divisors
of n.

Cohen (6) proved, if any quasi perfect number n exists, then
(1.1.1)ω(n) 7 ⩾and n > 1035

Subsequently, Peter Hagis and Cohen (7) have used computations to improve some
of the results on quasi perfect numbers. In fact, they established that
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(1.1.2) for any quasi perfect number n, ω(n) ⩾15 if (15, n) = 1, ω(n) ⩾ 9 if 3 ł n and in other
case ω(n) > 7 and also n > 1035., where ω(n) denotes the number of divisors of n.
Cattaneo (1) has proved the following theorem:
1.1 Theorem: If n is a quasi perfect number then
(1.1.3)n = p2e1

1 p2e2
2 · · · p2er

r
where pi’s are odd primes
Moreover,
(1.1.4) i) pi≡ 1 (mod 8) ⇒ei≡ 0 or 1 (mod 4)
ii) pi≡3(mod 8)⇒ ei≡0 (mod 2)
iii) pi≡ 5 (mod 8) ⇒ ei≡0 or -1 (mod 4)
iv) pi≡ 7 (mod 8) ⇒ ei≥1
In a different direction, Cohen (8) has considered R(n), the sum of the reciprocals of the distinct primes dividing the quasi

perfect number n (if exists) and obtained bounds for R(n). They are
(1.1.5)

i) 0.667450 < R(n)< 0.693148 i f (15, n) = 1
ii) 0.603831 < R(n) < 0.625140 i f (15, n) = 3
iii) 0.647387 < R(n) < 0.670017 i f (15, n) = 5
iv) 0.596063 < R(n) < 0.602009 i f (15, n) = 15

New methods were introduced by Tang and Feng (9) and they established that there are no odd deficient-perfect numbers
with three distinct prime divisors. The alternate proof was given in (10) using special components, which is

(1.1.6) If n is a quasi perfect number and is of the form (1.1.3) then for at least one factor p2ei
i , we have either pi ≡ 1(mod 8) and ei ≡ 1(mod 4)

or
pi ≡ 5(mod 8) and ei ≡ 3(mod 4)

Calling 2ei
i as a special component if it satisfies (1.1.6)

and proved every quasi perfect number has an odd number of special components.
In 2019, Tomohiro (11) has given some lower bounds concerning quasi perfect numbers of the formN=m2 wherem is square

free and Prasad (12) obtained a lower bound for the product of the distinct primes dividing n in terms of ω(n).
In this paper, the upper bounds given in (1.1.5) are improved and subsequently an important result regarding divisibility

with primes of n is obtained.

2 Methodology

In this section, we will prove some lemmas used in the sequel. We shall give detailed proof of the required lemmas in (13) which
were used for bounds of odd perfect numbers.

2.1 Lemma:

For o < p ≤ 1
3 we have 1+ p+ p2 + p3 + p4 > ep+t1 p2where t1 = 0.373.

Proof: For simplicity of notation we write t for t1. Consider the function

f (p) = e(p+t p2)−(1+p+p2+p3+p4)

=
(

1+ (p+t p2)
1! +

(p+t p2)
2

2! +
(p+t p2)

3

3! + . . .

}
−
(
1+ p+ p2 + p3 + p4

)
= p2

(
t − 1

2

)
+ p3 (t −1)+ p4

(
t2

2 −1
)
+ 1

3!

(
p+ t p2

)3
+ . . .

Now the inequality of the lemma holds

⇔ f (p)< 0

⇔ 1
3!
(

p+ t p2)3
+

1
4!
(

p+ t p2)4
+ · · ·< p2

(
1
2
− t
)
+ p3 (1− t)+ p4

(
1− t2

2

)
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⇔ 1
3!

p(1+ t p)3 +
1
4!

p2(1+ t p)4 + · · ·<
(

1
2
− t
)
+ p(1− t)+ p2

(
1− t2

2

)

⇔ 1
6

p(1+ t p)3
(

1+
1
4

p(1+ t p)+ . . .

]
<

(
1
2
− t
)

(1)

But for 0 < p ≤ 1
3 , we have

g(p) =
1
6

p(1+ t p)3
(

1+
1
4

p(1+ t p)+
1

20
p2(1+ t p)2 + . . .

]
< 1

6 p(1+ t p)3
(

1+
(

p+ t p2
)
+
(

p+ t p2
)2

+ . . .
]

= 1
6 p(1+ t p)3(1− (p+ t p2

)]−1
,

Whenever t is chosen such that
(

p+ t p2
∣∣< 1. Therefore for 0 < p ≤ 1

3 , we have

g(p)<
1
6

p(1+ t p)3
(

1
1− (p+ t p2)

]

≤ 1
18

(
1+

t
3

)3
(

1
1−
( 1

3 +
t
9

)]

1
18

• (3+ t)3

33 • 9
6− t

(2)

Now from (1) and (2), the inequality of the lemma holds if

1
18

• (3+ t)3

33 · 9
6− t

<
1
2
− t,

and this holds for t = 0.373. Hence the lemma.
In similar way, we can prove the following Lemma 2.2, Lemma 2.3 and Lemma 2.4.

2.2 Lemma:

For 0 < p ≤ 1
7 we have 1+ p+ p2 > ep+t2 p2 where t2 = 0.406.

2.3 Lemma:

For 0 < p ≤ 1
5 we have 1+ p+ p2 + p3 + p4 + p5 + p6 > e(p+t3 p2) Where t3 = 0.496

2.4 Lemma:

For 0 < p ≤ 1
5 we have 1+ p+ p2 + p3 + p4 + p5 + p6 + p7 + p8 > e(p+t4 p2) Where t4 = 0.4998.

2.5 Lemma:

Suppose p is a quasi perfect number, Rk (p) is the sum of reciprocals of the kth powers of the distinct primes dividing p and
t = min(t1, t2, t3, t4) = 0.373 where t1, t2, t3, t4 are as given in Lemma 2.1 to 2.4. Then R1 (p)+ cR2 (p)< log(2.000000001).

Proof: Given that p is quasiperfect, so that in view of (1.1.3) and (1.1.6) we can write p as
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(2.5.1)

p = a2e1
1 a2e2

2 . . .a2er
r ·b2 f1

1 b2 f2
2 . . .b2 fs

s

Where each of the a2e
i is a special component and b

2 f j
j is any component.

Then by (1.1.6), r is odd and also for each i, we have either
(2.5.2)  ai ≡ 1(mod 8) and ei ≡ 1(mod 4)

or
ai ≡ 5(mod 8) and ei ≡ 3(mod 4)

Further by (1.1.4), for each j,
(2.5.3)

(2.5.3)


b j ≡ 1(mod 8)⇒ f j ≡ 0(mod 4)
b j ≡ 3(mod 8)⇒ f j ≡ 0(mod 2)
b j ≡ 5(mod 8)⇒ f j ≡ 0(mod 4)

b j ≡ 7(mod 8)⇒ f j ≥ 1

Therefore by (2.5.2) and (2.5.3) we have
(2.5.4)

2+
1
p
=

σ(p)
p

=
r

∏
i=1

(
1+

1
ai

+ · · ·+ 1

a2ei
i

)
S

∏
j=1

1+
1
b j

+ · · ·+ 1

b
2 f j
j


> ∏ai≡1(mod 8)

(
1+

1
ai

+
1
a2

i

)
∏ai≡5(mod 8)

(
1+

1
ai

+
1
a2

i
+

1
a3

i
+

1
a4

i
+

1
a5

i
+

1
a6

i

)

∏b j≡1(mod 8)

(
1+

1
b j

+
1
b2

j
+

1
b3

j
+

1
b4

j
+

1
b5

j
+

1
b6

j
+

1
b7

j
+

1
b8

j

)

∏b j≡3(mod 8)

(
1+

1
b j

+
1
b2

j
+

1
b3

j
+

1
b4

j

)
·∏b j≡7(mod 8)

(
1+

1
b j

+
1
b2

j

)

∏b j≡5(mod 8)

(
1+

1
b j

+
1
b2

j
+

1
b3

j
+

1
b4

j
+

1
b5

j
+

1
b6

j
+

1
b7

j
+

1
b8

j

)

Now using Lemmas 2.1 to 2.4 on the right of (2.5.4) we get

2+
1
p
> ∏ai≡1(mod 8)

e

(
1
ai
+

t1
a2

i

)
·∏ai≡5(mod 8)

e

(
1
ai
+

t3
a2

i

)
·∏b j≡1(mod 8)

e

(
1

b j
+

t4
b2

j

)
·∏b j≡3(mod 8)

e

(
1

b j
+

t2
b2

j

)

·∏b j≡5(mod 8)
e

(
1

b j
+

t4
b2

j

)
·∏b j≡7(mod 8)

e

(
1

b j
+

t1
b2

j

)

Which on taking logarithm gives

log
(

2+
1
n

)
> ∑ai≡1(mod 8)

(
1
ai

+
t1
a2

i

)
+∑ai≡5(mod 8)

(
1
ai

+
t3
a2

i

)
+∑b j≡1(mod 8)

(
1
q j

+
t4
q2

j

)
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+∑b j≡3(mod 8)

(
1
q j

+
t2
q2

j

)
+∑b j≡5(mod 8)

(
1
q j

+
t4
q2

j

)
+∑b j≡7(mod 8)

(
1
q j

+
t1
q2

j

)

= R1 (p)+ t1∑ai≡1(mod 8)
1
a2

i
+ t3∑ai≡5(mod 8)

1
a2

i
+ t4∑b j≡1(mod 8)

1
b2

j

+t2∑b j≡3(mod 8)
1
q2

j
+ t4∑b j≡5(mod 8)

1
q2

j
+ t4∑b j≡7(mod 8)

1
q2

j

> R1 (p)+ tR2 (p)
Since t = min(t1, t2, t3, t4), proving the lemma because p > 1035.

2.6 Lemma:

Suppose p is quasi perfect and α = 2+ 1
p . Then for any divisor of q of p with q < p, we have R1 (p) < R1 (q) + tR2 (q) +

log
(

αq
βσ(q)

)
− tR2 (p) , where β = 1 if(p,15) = 1 or (p,15) = (q,15) = 3

or (p,15) = (q,15) = 5 or (p,15) = (q,15) = 15
1+ 1

3 +
1
32 i f (p,15) = 3 and (q,15) = 1 or (p,15) = 15 and (q,15) = 5

1+ 1
5 +

1
52 i f (p,15) = 5 and (q,15) = 1 or (p,15) = 15 and (q,15) = 3(

1+ 1
3 +

1
32

)(
1+ 1

5 +
1
52

)
i f (p,15) = 15 and (q,15) = 1

Proof: Suppose p is quasiperfect, it is of the form p = ∏r
i=1 a2ei

i , where ai’s are odd primes, then
(2.6.1)

α = 2+
1
p
=

σ (p)
p

=
r

∏
i=1

(
1+

1
ai

+
1
a2

i
+ · · ·+ 1

a2ei
i

)

Suppose q = ∏r
i=1 abi

i is a divisor of p with q < p. Then 0 ≤ bi ≤ 2ei for each i and bi < 2ei for at least one i. Also
(2.6.2)

σ (q)
q

= ∏r
i=1

(
1+

1
pi

+
1
p2

i
+ · · ·+ 1

pbi
i

)
Now from (2.6.1), (2.6.2) and Lemma 2.1, we get

≥
r

∏
i=1
ai|q

(
1+

1
ai

+ · · ·+ 1

abi
i

)
r

∏
i=1
ai|a

(
1+

1
ai

+ · · ·+ 1
a2

i

)

= σ(q)
q exp

{
∑a|p

(
1
a + t · 1

a2

)}
·β

Which on taking logarithm gives
logα > log

(
σ(q)

q

)
+∑a|p

a∤q

(
1
a + t · 1

a2

)
+ logβ

= log
(

σ(q)
q

)
+∑a∤q

1
a + t ·∑a|p

1
a2 + logβ

log
(

σ (q)
q

)
+R1 (p)−R1 (q)+ t (R2 (p)−R2 (q))+ logβ

Therefore,

R1 (p)< R1 (q)+ log
(

α
β

)
− log

(
σ (q)

q

)
− t (R2 (p)−R2 (q))

= R1 (q)+ tR2 (q)+ log
(

α(q)
βσ(q)

)
− tR2 (p)

Proving the lemma.
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3 Results and Discussion

3.1 Theorem:

Suppose 3 | n and 5 ł n. Then
i) R1(n) < 0.2727439241 if 7 | n.
and
ii) R1(n) < 0.2839779561 if 7 ł n.

Proof: (i) Suppose 3 | n and 7 | n.
It was proved in (2) that if n ≡ 0(mod 3) and p ≡ 1(mod 3) is a divisor of n then pk | n with k≥ 4. Therefore 74| n. Also since

w(n) ≥ 7 we get that m = 74 is a divisor of n with m < n, so that by Lemma 2.6 we have
R1(n) < R1(m)+ cR2(m)+ log

(
αm

βσ(m)

)
− cR2(n)

= 1
7 +0.373

(
1
72

)
+ log

(
α·74·6

β ·(75−1)

]
− (0.373)

(
1
32 +

1
72

)
= 1

7 +0.373
(

1
72

)
+ logα + log

(
74·6

(1.444444444)·(75−1)

]
− (0.373)

(
1
32 +

1
72

)
= 1

7 +0.373
(

1
72

)
+ log2+ log

(
1+ 1

2n

)
+ log

( 14406
24275.33333

]
− (0.373)

(
1
32 +

1
72

)
= 0.272743924 + log

(
1+ 1

2n

)
= 0.272743924 + 0.0000000001, since n > 1035. Thus R1(n) < 0.2727439241.

Suppose 3 | n and 7 ł n
It follows from (1.1.4) (ii) that 34| n . Also let m = 1 is a divisor of n with m < n, so that by Lemma 2.6 we have R1(n) <

log
(

α
β

)
− cR2(n)

= log α– log β– (0.373)
(

1
32

)
= log 2 + log

(
1+ 1

2n

)
– log (1.444444444) – (0.373)

(
1
32

)
= 0.283977956 + log

(
1+ 1

2n

)
= 0.283977956 + 0.0000000001, since n > 1035. Thus R1(n) < 0.2839779561.

3.2 Theorem:

Suppose 3 n and 5 | n. Then
i) R1(n) < 0.4547419741 if 7 | n.
and
ii) R1(n) < 0.4631158001 if 7 ł n

Proof: (i) Suppose 5 | n and 7 | n.
It follows from (1.1.4) (iii) and (1.1.4) (iv) that 56| n and 72 | n. Also since w(n) ≥ 7 we get that m = 72 is a divisor of n

with m < n, so that by Lemma 2.6 we have
R1(n) < R1(m)+ cR2(m)+ log

(
αm

βσ(m)

)
− cR2(n)

= 1
7 +0.373

(
1
72

)
+ log

(
α·72·6

β ·(73−1)

]
− (0.373)

(
1
52 +

1
72

)
= 1

7 +0.373
(

1
72

)
+ logα + log

(
72·6

(1.24)·(342)

]
− (0.373)

(
1
52 +

1
72

)
= 1

7 +0.373
(

1
72

)
+ log2+ log

(
1+ 1

2n

)
+ log

( 294
424.08

]
− (0.373)

(
1
52 +

1
72

)
= 0.454741974 + log

(
1+ 1

2n

)
= 0.454741974 + 0.0000000001, since n > 1035. Thus R1(n) < 0.4547419741.

Suppose 5 | n and 7 ł n
It follows from (1.1.4) (iii) that 56| n. Also let m = 1 is a divisor of n with m < n, so that by Lemma 2.6 we have

R1(n) < log
(

α
β

)
− cR2(n)

= log α– log β– (0.373)
(

1
52

)
= log 2 + log

(
1+ 1

2n

)
– log (1.24) – (0.373)

(
1
52

)
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= 0.4631158 + log
(
1+ 1

2n

)
= 0.4631158 + 0.0000000001, since n > 1035. Thus R1(n) < 0.4631158001.

3.3 Theorem:

If n is quasi perfect then (15, n) = 1 or 15. More explicitly, every quasi perfect number is divisible by both 3 and 5 or by none of
them.

Proof: If n is quasi perfect and (15, n) = 3.
Then by Lemma 3.1, R1(n) < 0.2839779561 while R1(n) > 0.603831 by (1.1.5) (ii), which gives a contradiction. Hence (15,

n) ̸=3.
Again, if (15, n) = 5.

Then by Lemma 3.2, R1(n) < 0.4631158001 while (1.1.5) (iii) gives R1(n) > 0.647387. These two contradict each other. Hence
(15, n) ̸=5.

Thus (15, n) = 1 or 15, proving the theorem.

3.4 Theorem:

If n is quasi perfect then 3.5.7 cannot divide n.
Proof: Suppose 3.5.7 divide n. Then it follows from (1.1.4) (ii), (1.1.4) (iii) and (1.1.4) (iv) that 34 | n, 56 | n, 72 | n. But it was

proved in (2) that if n ≡0 (mod 3) and p ≡1 (mod 3) is a divisor of n then pk | n with k ≥ 4. Therefore 74 | n. Also since w(n)
≥7 we get that m = 34.56.74 is a divisor of n with m < n, so that by Lemma 2.6 we have

R1(n) < R1(m)+ cR2(m)+ log
(

αm
βσ(m)

)
− cR2(n)

= 1
3 +

1
5 +

1
7 +0.373

(
1
32 +

1
52 +

1
72

)
+ log

(
α ·34·56·74·2·4·6

β ·(35−1)·(57−1)·(75−1)

]
− (0.373)

(
1
32 +

1
52 +

1
72

)
= 1

3 +
1
5 +

1
7 + logα + log

(
34·56·74·48

1·(35−1)·(57−1)(75−1)

]
= 1

3 +
1
5 +

1
7 + log2+ log

(
1+ 1

2n

)
+ log

(
34·56·74·48

(35−1)·(57−1)(75−1)

]
= 0.590774338 + log

(
1+ 1

2n

)
= 0.590774338 + 0.0000000001, since n > 1035. Thus R1(n) < 0.5907743381.
But (1.1.5) (iv) gives R1(n) > 0.596063, which gives a contradiction.

Hence 3.5.7 cannot divide n.

4 Conclusion
Thestudy is focused on improving upper bounds and in the process concluding about the restrictions on divisors of quasi perfect
numbers which is a non-deficient number. The inequality we proved in lemma 2.6 is used to improve bounds in Theorem 3.1
and Theorem 3.2 which helps in the important conclusion that either 3 and 5 together divide a quasi perfect number or none
of them divide. We also come to the conclusion that 3.5.7 together cannot divide a quasi perfect number.
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