
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 29-01-2022
Accepted: 01-09-2022
Published: 22-09-2022

Citation: Nagalambika , Rao LM
(2022) Component Reusability in
Extreme Programming Using
Microservice Architecture . Indian
Journal of Science and Technology
15(36): 1808-1814. https://doi.org/
10.17485/IJST/v15i36.248
∗
Corresponding author.

nagalambika.swamy@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2022 Nagalambika &
Rao. This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Component Reusability in Extreme
Programming Using Microservice
Architecture
Nagalambika1∗, L Manjunath Rao2

1 Research Scholar, Department of MCA, Dr. Ambedkar Institute of Technology, Bangalore -
560056, Karnataka, India
2 Professor, Department of MCA, Dr. Ambedkar Institute of Technology, Bangalore,
Karnataka - 560056, India

Abstract
Background/Objectives: In a distributed development environment, the
different teams share the code leading to dependencies and shadowing the
purpose ofmicroservices. This study is to propose the technique of component
reusability in Online Order Management to measure the reusability in terms
of lib reuse, product customization and vendor services. Methods: The case
study on online order management software was analysed, developed and
tested. The mean and standard deviation are calculated to what extent OOM
projects can be reused in other application domains like audio, business,
communication, games, software development, library management, home
utilities and education. The source of our descriptive analysis is the Kruskal-
Wallis test. Reusability is calculated by three markers: lib-reuse, Reuse-
frequency and throughput. The proposed technique is efficient in terms of
throughput. Findings: The presented case study is a practical application that
illustrates the percentage of reusability of the proposed model. This will not
only minimize engineering efforts but also reduces resource costs. Reusability
is directly proportional to resource cost. More the reuse percentage lesser
the resource cost. The results have shown the reusability percentage for each
domain. Projects are selected based on popularity from GitHub and BitBucket.
Novelty: The novelty of the proposed approach lies in the fact that the specific
application domains can be considered as reusing assets from open-source
software projects. The proposed approach increases the autonomy between
the teams and also helps teams to operate with minimal dependencies. The
software professionals can benefit from the proposed methods.

Keywords: Reusability; Microservices; Extreme Programming

1 Introduction
The use of microservices to build an efficient software system, that addresses many
modern-day application challenges. Reusability is widely adopted today (1). Before
microservices, monolith architecture was part of the play. The shortcoming of this

https://www.indjst.org/ 1808

https://doi.org/10.17485/IJST/v15i36.248
https://doi.org/10.17485/IJST/v15i36.248
https://doi.org/10.17485/IJST/v15i36.248
nagalambika.swamy@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

type was evident in the case of a large and complex application. Understanding and modification are not easy when the size
of the application is on the growing side. Also, it is difficult to understand the change as the modularity is affected due to the
large codebase. As mentioned in (2)

, the transition is incremental. But there is the possibility that to update one component, the
entire background task is disturbed as the entire application is required to be redeployed. Other problems include inter-module
dependencies and scalability issues. It is a self-contained process with unique and different business capabilities. This type of
system is inevitable for large systems. Using microservices architecture it is easy to select the features that are best suited for
the required functionality (service). It is all about offering customised products and services as needed, which is essentially the
same as microservices. It emphasises forming a collaborative development are a team in which all team members communicate
with one another and with their clients regularly. Every computer has a physical limit of load to be managed and similarly, there
is a limit on the number of functions to be specified, maintained and tested. Functions that exceed such restrictions will be
separated into distinct processes. The database tier will be segregated from the application tier, and front-end proxy servers and
load balancers will be utilised to coordinate horizontal scalability to numerous application servers, among other things. Service
architecture is required for big, complicated, and scalable systems (2).

Several survey-based studies have been conducted so far. Authors (3), have conducted a study using poor documentation
as a goal. Along with this inventory of various tools has been analysed. Although quantity and quality of documentation are
discussed this study has not touched on the executable documentation area. A real implementation on the taxation department.
Not only code but also the performance of the system is improved using this approach. The authors have touched on another
different area, i.e. automated acceptance test. In the actual implementation, this approach has helped in the development of an
automated acceptance test with a reuse methodology. The development process is agile and requires, testing and development
to be tested iteratively. Authors have also proposed two performance measures called precision and recall, but these are not
tested yet. Although the line of implementation is different from ours, they have presented a structured review on the security
of microservices (4,5).

The research on reusability is the need for present and future as supported by (6). Descriptive statistics, open coding
of qualitative information, and odds ratio have been used to analyze the data, but We found multiple deviations in
criteria and methods used for decision making. Hence, this points to a gap between what is done in industry and what
is proposed by academia, at least for the cases studied. Thus, more collaborative studies with industry participation are
needed. Microservices support agile architecture but if the development isn’t properly managed it could affect the speed of
the process, reducing productivity and increasing technical debt. This paper investigates a way to manage the employment of
shared libraries in microservices to enhance agility throughout development. As an alternative to the use of shared libraries,
simple functionalities should be implemented by each microservice, whereas complex functionalities should be implemented
by external microservices with well-defined interfaces, good documentation and adequate versioning policies. The external
dependencies have not been taken into account which on being included can affect the results (7).

Authors have investigated the potential methods that can bring improvements in software quality for a small-scale software
firm. It recommends suggestions to use software craftsmanship to redesign its existing products. An extreme programming
approach is implemented for software development to support craftmanship. This approach has not included forward
engineering (8).

Authors in (9) have given a detailed comparison of extreme programming and scrum but this survey has not included
the distribution for the comparison. To enhance the software development process, the Extreme programming framework
is selected over other frameworks. The code developers write testing code before production in test-driven development
benefitting by avoiding unnecessary details and complexity (10). Extreme programming recommends automating testing and
integration to make the development process well-organized. TDD gives instant feedback to developers. TDD can be applied
to integration tests with mock objects as well as unit tests. This study also lags in implementing the microservices in distributed
agile systems (11).

Automatically analysing the use of reusable libraries that are present on the internet and understanding the scope and
nature of reuse in practice is challenging. It took a lot of time and effort to manually identify useful and relevant libraries.
Worse still, developers may not even be aware of non-popular but reusable libraries. It is mentioned that developers prefer to
implement features from scratch rather than reusing third-party features. The use of reusability not only will help increment in
the performance but also considering it on the distributed level will help reduce conflicts between the teams (12).

The multiple case study on 596 Java OSS projects is implemented to evaluate their reusability. The research findings of
the study infer that the most reuse-friendly components are from the domains of Science and Engineering Applications and
Software Development Tools. Such results can act as a guide for selecting appropriate projects for studying or exploiting reuse
opportunities (13).

https://www.indjst.org/ 1809

https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

This work will help practitioners to avoid the bad practices altogether or otherwise deal with them more efficiently. We
have not only explored the association and interlink between the Extreme Programming framework but also proposed a
functional model of reuse. Extreme programming is renowned agile practice. In the development model, iterations are used for
development and system requirements are recorded by the customer using user stories. In the planning stage, the developers
along with the customer determine the required functionality be developed. This paper attempts to clarify the definitions and
differences between Service-oriented architecture andMicro Services by pointing out their pros and cons.The commonbetween
both is system integration, but the industry ismore aligned towardmicroservices due to their elastic scalability and independent
deployability (14).

A survey on recent advances in microservices focuses on the evolutionary aspects for better documentation understanding
of microservices, how these originated and what is their possible future (15). The move towards microservices is an important
matter as major companies are either shifting their back-end systems or developing their business model following the
microservice paradigm. We will witness a big change in the view in which software is envisioned, and in the technique in
which abilities are planned into components. The other advantageous highlights of microservices are scalability, fault tolerance
and availability. The gaps shown by the background study are formulated as our research questions.

[RQ1] What is the extent to which the OOM project can be reused?
[RQ2] What are the differences in the availability of reusable sets of classes extracted from OOM projects?
Answering the aforementioned three research questions, the paper’s organization is as follows: Section 1.1 describes the

Framework of the Reusable Component Model. Section 1.2 presents the development approach. Sections 2 and 3 include case
study and model reuse across different platforms respectively followed by the conclusion.

1.1 The framework of the Reusable Component Model

Because of the trend toward the adoption ofmicroservices, software architecture is witnessing huge change. One of the preferred
approaches for capitalising on the popularity of microservices architecture in cloud computing is to transform the architecture
from a monolithic to microservices architecture (16). Applications in a monolithic architecture are written in the same source
code whereas microservices architecture deploys applications on different source code and other machines. Monolithic
architectures are less scalable and difficult to maintain. The conversion of monolithic software architecture to a microservice
architecture necessitates a specific strategy and technique (17,18). According to research on legacy software modernization, there
are three strategies for transitioning from monolithic to microservice architecture. There are three types: top-down, bottom-
up, and hybrid. Bottom-up and hybrid strategies both necessitate legacy software and software reengineering (8). Our research
employs a hybrid strategy because it is not only based on research papers but also on the legacy software related to online order
management.

Fig 1.The steps of the Research Methodology

https://www.indjst.org/ 1810

https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

Figure 1, shows the steps in our designed researchmethodology.The framework proposed is based onboth the research paper
and OOM software. Micro-services are built for combining small parts of a system to produce a combined system. Different
developers work on differentmicroservices.The application and backwork independently using amessage bus orHTTPAPI. In
our approach, we have implementedHTTPAPIs.The separation tomakemicroservices independent has helped in independent
authority on the present and future of service.

For large companies that are reliant on technology stack and architecture., there exist similarities in projects like user
management and messaging. Instead of doing this in a non-profit way, one of the viable solutions is to fix the problem using
microservices. This not only reduces the labour of developers but also saves time by simply cloning a code with the addition of
project-specific logic, and a culture of work-sharing by giving focus on innovation. The best-fit approach for such scenarios
is to build the system in a modular manner. Common infrastructures such as Naming service, API gateway, Security and
Logging offermicroservices. Eachmodule is responsible for its business logic. If a newmicroservice is required to be added.The
functionality of the common component can be reused. Each microservice has an associated library service. Library X package
repository contains completed reusable libraries. The team member can view, implement and download.

1.2 Development Approach

Now at this phase, we require to keep a copy of reusable code. The biggest issue here is each microservice requires a tool to keep
track and synchronize the changes.This issue can be resolved if the components are organized as collection and synchronisation
are automatic between them. This approach is implemented by Github. The one advantage of this approach is that teams can
focus only on the components required by them as shown in Figure 2.

Fig 2.Development approach using Microservices

The reported literature has shown the adaption of extreme programming in large-scale projects. Model reuse seems to be a
topic of noteworthy interest in application areas, especially in an online order management system. In this section, we take an
online order management system for testing and verifying our approach, along with the design of a case study for exploring the
reusability of online order management (OOM) projects. In particular, we examined 8, OOM projects. The key purpose that we
performed a case study rather than another type of empirical evaluation is that we wanted to investigate the reuse opportunities
offered by real OOM projects. In the multichannel order service in OOM, each service has its database. Order services are
called in a dashboard as well as notification services showing the reusability. The required product customizations and vendor
support terms are reusability services.

In this paper, we have chosen two software reusability measures called library reuse and reuse frequency. The formula to
derive the percentage of reuse is derived by calculating the ratio of the sum of the number of same lines present in the program
and the total number of lines present in the program. Most of the software can be developed by considering existing products.
Technically it is the exact definition of reusability. Not only the lines of code but we also need to calculate the reusability of the
class. A mathematical expression can be written as:

LOC = (SLOC, ALOC) (1)
GLOC= ({range LOC},{β , range LOC} (2)
RLOC = β ,
Mapping δ loc= Class→ range LOC

δ loc (Method) → range LOC (3)

2 Result
This case study’s context is the development of OOM. For the proposed framework, we have used a meta-repository to collect
data from various projects hosted on BitBucket and GitHub. The unit identification and analysis are performed automatically

https://www.indjst.org/ 1811

https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

after dumping the repository’s entire database. Data collection is also automatic for each unit of analysis, in some cases by
automatic parsing the database is performed, while in other cases manual parsing is required. The criteria that we have used for
selecting projects and populating the repository are discussed below:

• Projects should be written in Java and Junit and ranked by popularity in BitBucket and GitHub. The top 8 based on
popularity are selected and the first two that met our criteria are filtered.

We have used the following technologies to achieve reusability:
• Application server: Tomcat 8.5.
• Framework: Spring boot.
• Programming language: Open-source Java and Junit.
• IDE: IntelliJ IDE.
• Tools: Maven building tools.
• Code Repository: Bit bucket and Git.
• User services: Running on port 9001 with Url: http://localhost:9001/user?id=10

3 Discussion
To measure the efficiency of the proposed methodology, we have used two factors of reuse called library reuse and reuse
frequency. Library reuse is defined as, under the given domain how many external libraries can be used, while the reuse
frequency indicates the number of reuse of system files. Table 1, presents the results of our first research question i.e. to
which extent OOM projects can be reused in other systems. Reusability is quantified by three indicators: lib-reuse, reuse
amount, and reuse frequency. The application domains are audio, business, communication, games, software development,
library management, home utilities and education. The source of our descriptive analysis is Kruskal- Wallis test.

Table 1. Software Reuse in different domains

Domain Lib-reuse Reuse frequency Average throughput New Reused Reuse percentage
Mean Std.Dev Mean Std.Dev Per second

Audio 0.029 0.03 0.008 0.03 50.67 7 25 28
Business 0.032 0.02 0.004 0.02 50.88 13 40 3.25
Communication 0.041 0.08 0.019 0.04 50.33 33 45 73
Games 0.023 0.03 0.023 0.04 50.22 15 70 21
Software Development 0.034 0.02 0.011 0.02 45.99 23 34 67
Library Management 0.039 0.01 0.023 0.02 45.07 12 32 37
Home Utilities 0.023 0.02 0.022 0.01 50.34 34 13 2.6
Education 0.011 0.01 0.023 0.02 50.55 34 45 75

The table shows the lib-reuse, reuse frequency and average throughput in different domains. Our approach can be compared
to (19) in terms of throughput. The proposed approach has excelled in terms of throughput. The highlighted values show the
difference in factors of reusability in terms of Mean and Standard Deviation. Reusability is calculated based on the use reuse of
existing classes and new classes used. In the case of the education domain, 34 classes are new while 45 are reused, making the
percentage 75. While gathering data on this basis few factors like security, login modules, notifications, cancellations of orders
in bulk and updates. These all factors make around more than 100 lines of classes, segregated into separate spaces to make a
library this separate library is used across other applications as well. This vaguely makes the reusable percentage around 30
per cent overall. Table 2, shows an evaluation of the documentation in OOM projects accessed using indicators – amount and
completeness.

The table shows that the availability of reuse in the OOM model is high in Business and Library management. While
documentation is high in the case of communication. Of all the domains considered, the education domain has low availability,
mean and standard deviation. This could be another factor for research elaboration. Our results can provide useful insights
and feasibility of reuse opportunities to both researchers and practitioners. The results also provide indications of software
reusability in different application domains.

On the other hand, the results of this study provide guidance on case selection for researchers, selecting the appropriate
application. Fromall the factorsmentioned, only documentation is subjectively evaluated to check the replicability and common
understanding of the OOM projects. In this way, the proposed method has not only overcome the weakness of Extreme
programming i.e. weak documentation but also clearly defined unambiguous criteria for evaluation of OOM projects.

https://www.indjst.org/ 1812

https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

Table 2. Software Availability and reusability
Domain Availability Documentation

Mean Standard Deviation Very low Low Moderate High Very High
Audio 0.012 0.03 15 40 28 45 10
Business 0.024 0.03 23 25 30 23 30
Communication 0.023 0.02 15 23 12 50 40
Games 0.019 0.03 29 40 0 22 29
Software Development 0.015 0.02 30 33 18 34 39
Library Management 0.039 0.04 35 38 0 12 20
Home Utilities 0.023 0.02 40 39 11 24 11
Education 0.011 0.01 30 40 0 40 20

4 Conclusion
To reduce the development time, reusability in microservices is preferred. Formal documentation is difficult to understand
and does not contribute much to the end product. In this study, we have worked on reusability percentage. Though Cost is
dependent on the percentage of reusability it is trivial because it depends on several factors. Currently, our approach is based
on reusability percentage, availability and documentation only. With an online order management model, we put our reusable
component model development strategy to the test. The novelty of the approach lies in its enhanced throughput. In several
initiatives, our method has proven to be effective for the development chain. The presented model is reusable, as demonstrated
by the case study and this practical application. Researchers, for example, can simply identify application domains that need
applying methods and tools that improve reusability. Additionally, in future, we will work on making a framework that could
be streamlined.

References
1) Lo SK, Liew CS, Tey KS, Mekhilef S. An Interoperable Component-Based Architecture for Data-Driven IoT System. Sensors. 2019;19(20):4354–4354.

Available from: https://doi.org/10.3390/s19204354.
2) S A. The Economics of Microservices. IEEE Cloud Computing. 2016;3(5):16–20. Available from: https://doi.org/10.1109/MCC.2016.109.
3) Theo T, Uwe VH, Paris A. A mapping study on documentation in Continuous Software Development. Information and Software Technology.

2022;142:106733–106733. Available from: https://doi.org/10.1016/j.infsof.2021.106733.
4) Berardi D, Giallorenzo S, Mauro J, Melis A, Montesi F, Prandini M. Microservice security: a systematic literature review. PeerJ Computer Science;7:e779–

e779. Available from: https://doi.org/10.7717/peerj-cs.779.
5) Papoutsoglou EA, Faria D, Arend D, Arnaud E, Athanasiadis IN, Chaves I, et al. Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New

Phytologist. 2020;227(1):260–273. Available from: https://doi.org/10.1111/nph.16544.
6) Kai P, Deepika B, SyedM,KrzysztofW, TonyG, Efi P. ChoosingComponentOrigins for Software Intensive Systems: In-House, COTS,OSS orOutsourcing?

- A Case Survey. IEEE Transactions on Software Engineering. 2018;44(3):237–261. Available from: https://doi.org/10.1109/TSE.2017.2677909.
7) Heshmatisafa S, Seppänen M. API Utilization and Monetization in Finnish Industries BT - Agile Processes in Software Engineering and Extreme

Programming - Workshops. 2020;p. 23–31. Available from: https://doi.org/10.1007/978-3-030-58858-8_3.
8) Ahmadi A, Budiardjo EK, Mahatma K. Software Craftsmanship Skill using Extreme Programming for Quality Improvement: A Case of Very Small

Software Organization. 2021 10th International Conference on Software and Computer Applications. 2021;p. 94–99.
9) Faiza A, Shabib A, Syed SM,UsmanW. Comparative analysis of two popular agile processmodels: extreme programming and scrum. International Journal

of Computer Science and Telecommunications. 2017;8(2):1–7. Available from: www.ijcst.org/Volume8/Issue2/p1_8_2.pdf.
10) KholidH. The extreme programming approach for financialmanagement systemon local government. International Conference on Science andTechnology.

2015;p. 29–34. Available from: https://doi.org/10.1109/TICST.2015.7369335.
11) Kent B. Test-Driven Development By Example. 2002.
12) Mohamed AS, Ali O, Houari AS, Raula GK, Katsuro I, Inoue, et al. Improving reusability of software libraries through usage pattern mining. Journal of

Systems and Software. 2018;145:164–179. Available from: https://doi.org/10.1016/j.jss.2018.08.032.
13) Maria E, Stamatia AA, Alexander B, Ioannis C, S. Reusability of open source software across domains: A case study. Journal of Systems and Software.

2017;134:211–227. Available from: https://doi.org/10.1016/j.jss.2017.09.009.
14) Tomas C, Michael JD, Michal T. Contextual understanding of microservice architecture: current and future directions. ACM SIGAPP Applied Computing

Review. 2018;17(4):29–45. Available from: https://doi.org/10.1145/3183628.3183631.
15) Nicola D, Ivan L, Stephan TL,ManuelM, RuslanM,Microservices LS. How tomake your application scale. Ershov Informatics Conference. 2017. Available

from: https://doi.org/10.1007/978-3-319-74313-4_8.
16) Lorenzo DL. From monolithic architecture to microservices architecture. IEEE International Symposium on Software Reliability Engineering Workshops.

2019;p. 93–96. Available from: https://doi.org/10.1109/ISSREW.2019.00050.
17) Nagalambika S, RKSM, Praveen. Component Based SoftwareArchitecture Refinement andRefactoringMethod into Extreme Programming. International

Journal of Advanced Research in Computer and Communication Engineering. 2016;5(12):398–401. Available from: https://doi.org/10.17148/ijarcce.2016.
51291.

https://www.indjst.org/ 1813

https://doi.org/10.3390/s19204354
https://doi.org/ 10.1109/MCC.2016.109
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.1111/nph.16544
https://doi.org/10.1109/TSE.2017.2677909
https://doi.org/10.1007/978-3-030-58858-8_3
www.ijcst.org/Volume8/Issue2/p1_8_2.pdf
https://doi.org/10.1109/TICST.2015.7369335
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2017.09.009
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1109/ISSREW.2019.00050
https:// doi.org/10.17148/ijarcce.2016.51291
https:// doi.org/10.17148/ijarcce.2016.51291
https://www.indjst.org/


Nagalambika & Rao / Indian Journal of Science and Technology 2022;15(36):1808–1814

18) Nagalambika L,Manjunath R. A Study onDevelopment of Software Applications Using Extreme Programming andDevops. Inspira-Journal of Commerce.
2021;07(4):27–30. Available from: https://www.inspirajournals.com/issue/downloadfile/2/Volumne-Pages/lPZxNrYwLBBmg1pWVaLG.

19) Andre DC, Ronaldo D, Frank IS, S. An Architecture to Automate Performance Tests on Microservices. 18th International Conference on Information
Integration and Web-based Applications and Services. 2016;p. 422–429. Available from: https://doiorg/10.1145/3011141.3011179.

https://www.indjst.org/ 1814

https://www.inspirajournals.com/issue/downloadfile/2/Volumne-Pages/lPZxNrYwLBBmg1pWVaLG
https://doi org/10.1145/3011141.3011179
https://www.indjst.org/

	Introduction
	1.1 The framework of the Reusable Component Model
	1.2 Development Approach

	Result
	Discussion
	Conclusion

