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Abstract
Objectives: To propose an innovative technique for designing an efficient
and adaptive machine learning model using classifier assembly for estimating
village level soil nutrient index using soil datasets. Methods: Freely available
soil datasets were collected from the concerned authority of Govt. of India.
These datasets were used by the proposed machine learning model designed
with a classifier assembly of fifteen diverse classifiers for nutrient class
identification. The performance of each classifier was evaluated in terms
of five well-accepted standard metrics. The outputs of the best performing
classifier were then used for estimation of village level nutrient index using
modified Parker’s method. Findings: The model was applied for nutrient class
identification, and estimation of the nutrient index of different villages using
freely available benchmarked Soil health Card datasets provided by the Govt.
of India. The empirical results depicted that for nutrient class identification, this
proposed machine learning model overperformed the other existing models
in terms of average accuracy score. In the case of Copper, it provided the
highest average accuracy of classification (0.949) and estimation accuracy
of 95.48%. For Sulphur, an average classification accuracy of 0.891 and an
estimation accuracy of 90.66% were achieved. Similarly, for Zinc, an average
classification accuracy of 0.883 and an estimation accuracy of 89.63% were
observed. Novelty: This study suggests a novel architecture of a machine
learning model using classifier assembly to estimate the village level nutrient
index with the highest possible accuracy, using freely available soil datasets.
Keywords: Nutrient index; Village level soil fertility; Fertilizer management;
Machine learning; Classifier assembly

1 Introduction
Depleting soil fertility is amajor threat to the sustainable agricultural production system
and food security. Before cultivating a crop, prior assessment of soil fertility is
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indispensable for maintaining soil health and enhancing crop production (1). The overall fertility of the soil is defined in terms
of the nutrient index of each nutrient. The nutrient index quantifies the amount of a nutrient present in agricultural soil and
helps to assess overall soil fertility. Before cultivating any crop, proper estimation of the nutrient index is one of the prime tasks
for proper fertilizer management andmaintaining good soil health. For proper estimation of the nutrient index, a large number
of samples are collected from different locations of a village and are classified into three groups; low, medium, and high, based
on the estimated quantity of nutrients. Proper classification of the nutrient group is a prerequisite for appropriately estimating
a nutrient index.

In the traditional approach, nutrient index estimation is done using various laboratory-based chemical methods. However,
these methods suffer from significant implementational limitations. In countries like India, extensive and expensive soil testing
in rural villages is impractical due to the lack of accessibility and infrastructure.

As an alternative, severalmachine learning (ML) basedmodels were suggested to estimate different parameters and nutrients
of agricultural soils (2). In a study, Motia and Reddy comprehensively reviewed and analyzed the potential of several ML
techniques for nutrient management and fertilizer recommendations (3). In the recent past, several ML models were suggested
to assess fertility status using various soil datasets. Sheeba et al. proposed an extreme learning model that used IoT sensor
datasets to assess various soil parameters in four districts of Tamil Nadu, India (4). In the USA, Longchamps et al. suggested a
random forest classifier to predict the soil fertility classes based onUV-Vis-induced fluorescence sensor datasets (5). Zhang et al.
proposed amodel to estimate soil organicmatter, total nitrogen, and total carbonwhere remote sensing data were used as inputs
to a support vector machine and an artificial neural network to determine these three soil attributes (6). To estimate the total
nitrogen content of the soil, Wang et al. developed a machine learning model using Visible-near-infrared spectrum (Vis-NIR)
spectroscopy. Four machine learning models, random forest, ordinary least squares regression, extreme learning machines,
and convolution neural networks, were used to process the sensor data (7). Khanal et al. suggested a model for the prediction
of soil acidity (pH), cation exchange capacity (CEC), organic matter, magnesium, and potassium, where five different machine
learning techniques were used with remote sensing data (8). In Iran, Emadi et al. employed six machine learning techniques
and remote sensing data to map soil organic carbon content (9). However, these different models were designed with isolated
classifiers. Other limitations of these models were that they either used costly sensors or remote sensing datasets, which are
expensive and inaccessible to rural farmers.

To overcome the limitations, as an alternative to the costly sensors or remote sensing datasets, Suchitra and Pai (10) proposed a
model to estimate village level nutrient index using freely available Soil Health Card (SHC) data (11) provided by theMinistry of
Agriculture and FarmersWelfare, Government of India. Extreme learning machines were employed to classify soil pH, organic
carbon, phosphorus, Potassium, and Boron. However, they evaluated the performance of the system in terms of unweighted
metrics, which were not appropriate for the unbalanced datasets they used.

The three nutrients, Sulphur (S), Zinc (Zn), and Copper (Cu), play vital roles in maintaining the good health of the plants in
agriculture (12). S promotes plant enzyme activation, chlorophyll formation, timely maturation of leaves and seeds, and drought
tolerance. It provides protection against certain plant diseases. Zn assists metabolic activities and enzyme production for plant
growth and is an essential nutrient for the better production of chlorophyll and carbohydrates. Cu is a vital component of
various oxidase enzymes and proteins required by plants. It has a significant role in photosynthesis and proper plant vegetative
growth for a higher crop yield.

This paper suggests an innovative technique for designing a machine learning model using a classifier assembly to better
estimate village level nutrient index using freely available Soil Health Card (SHC) data. Regarding the estimation of the nutrient
index of three vital nutrients; Sulphur (S), Zinc (Zn), and Copper (Cu), no work has been reported so far. Our secondary
objective is to estimate the nutrient indices of these three nutrients using our proposed model. The outcomes are presented as
case studies.

2 Materials and Methods

2.1 Datasets

The system uses datasets obtained from the Soil Health Card (SHC) repository. The Soil Health Card scheme is a flagship
program launched in February 2015 and is run by the Government of India for monitoring soil health. In the SHC scheme,
uniform norms are followed across different States in India to assist site-specific fertilizer management.The scheme is managed
by Integrated Nutrient Management Division in the Ministry of Agriculture and Farmers Welfare, Government of India. Soil
samples collected fromdifferent locations are analyzed in several soil testing laboratories across India as per the norms provided
by the authority. The results are regularly uploaded to the National Soil Health Card portal (11).
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The datasets include physical parameters of soil such as pH, organic carbon content (OC), electrical conductivity (EC), and
content of nutrients such asNitrogen (N), Phosphorous (P), Potassium (K), Sulphur (S), Zinc (Zn), Iron (Fe), Boron (B), Copper
(Cu), andManganese (Mn) (13).The raw datasets were pre-processed by eliminating the records havingmissing data and outliers
to minimize the imbalances as much as possible. The strategy adopted to put these nutrients in the respective target class was
based on the guidelines suggested by the Department of Agriculture & Cooperation, Ministry of Agriculture, Government of
India (14). S was classified as the medium for content >10 ppm and low otherwise. If Zn content > 0.6 ppm, it was classified as
medium and otherwise low. Similarly, Cu content > 0.2 ppm was categorized as medium or otherwise low.The target class high
for these three nutrients did not arise for the study locations.

2.2 System architecture

The proposed system was designed to estimate the nutrient index with a three-step architecture. In the first step, the content of
the various nutrients and other contributory parameters of the soil of a villagewas collected from the SHCdata repository. Based
on village level datasets, a targeted nutrient was classified into three groups of samples, high, medium, and low, using a set of
machine learning-based classifiers (classifier assembly). In the second step, a performance evaluatormeasured the performance
of each classifier of the classifier assembly in terms of five performance metrics and selected the best performing one for that
particular context.The outputs of the classifiers and the values of performancemetrics were stored in various arrays. In the final
step, the nutrient index estimator estimated the value of a nutrient index based on the outputs of the best-performing classifier.
As the best performing classifier was selected, the system always achieved the highest possible accuracy. The architecture of
the proposed system is presented in Figure 1. All system modules were coded using Python (Ver. 3.7) using standard library
functions and can easily be deployed using a laptop or desktop.

Fig 1.The architecture of the proposed system

2.2.1 Classifier assembly
The classifier assembly consisted of seven standalone classifiers and eight ensemble classifiers.The standalone classifiers are less
complex and requiremuch less computation time. In general, the ensemble classifiers perform better than a standalone classifier
by amalgamating the results of several single classifiers. Each of the fifteen classifiers independently classified the target nutrient
into three groups; low, medium, and high. The classifiers used in the assembly and their respective tunable hyperparameters
are presented in Table 1 .

Table 1. Classifiers used and their tunable hyperparameters.
Sl. no Classifiers Tunable hyperparameters
1. Logistic regression (LGR) Penalty, Solver algorithm, Tolerance
2. Ridge classifier (RIC) Regularization (alpha), Solver algorithm, Tolerance
3. Passive-Aggressive classifier (PAC) Regularization, Tolerance
4. Gaussian Naïve bayes classifier (GNB) Adjustable variance
5. Multi-layer perceptron neural network (MLP) Hidden layer size, Activation function, Training algorithm
6. K-nearest neighbor classifier (KNN) Number of neighbors
7. Decision tree classifier (DTC) Pruning cost, maximum depth
8. Bagging ensemble [Tree based] (BDT) Number of trees
9. AdaBoost classifier (ADA) Number of estimators
10. Gradient boost classifier [Tree based] (GBC) Number of trees
11. Light gradient boost classifier (LGB) Number of estimators
12. Categorical boost classifier (CAB) Number of estimators
13. Extreme gradient boost classifier (XGB) Number of trees

Continued on next page
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Table 1 continued
14. Extremely randomized trees classifier (EXT) Numbers of estimators
15. Random forest classifier (RFC) Numbers of estimators

For a targeted nutrient, the training and testing of the classifiers were done using the respective village level SHC datasets (11).
Randomly selected 60% of data was used for training, and the rest 40% was used for testing. The hyperparameters were tuned
using a five-fold cross-validation grid search strategy. Only the values of the hyperparameters leading to the best results were
selected for the final training and testing.

2.2.2 Performance evaluator
The performance evaluator accepted the outputs of each classifier as inputs and evaluated the performance of each classifier.
Several metrics have been suggested in the literature tomeasure the performance of a classifier. However, due to the unbalanced
nature of the present datasets, we used “weighted averaged” versions of five popular metrics. Such a strategy enabled us to get
the correct values of the metrics, weighted by the number of instances for each class. The five weighted metrics used in this
system were balanced accuracy (Ac), weighted precision (Pr), weighted recall (Rc), weighted F-scores (F), and Cohen’s kappa
(k) (15).

In supervisedmachine learning,measures of the classification quality are based on a confusionmatrix that contains correctly
and incorrectly recognized examples for each class. In the confusion matrix, tp denotes true positive, fp is false positive, fn is
false negative, and tn is the true negative count.Thus, the balanced accuracy (Ac), weighted precision (Pr), weighted recall (Rc),
and weighted F-score (F) are defined as (15,16):

Balanced Accuracy (Ac) =
1
2

(
tP

tp + fn
+

tn
tn + fP

)
(1)

Weighted Precision (Pr) =
∑m

i=1 (yi|
tPi

tPi + fPi

∑m
i=1 (yi|

(2)

Weighted Recall (Rc) =
∑m

i=1 (yi|
tPi

tPi + fni

∑m
i=1 (yi|

(3)

Weighted F−Score (F) =

∑m
i=1 (yi|

2tPi

2tPi + fpi + fni

∑m
i=1 (yi|

(4)

The suffix i denotes the corresponding fp, fn, tn, and tp values for thei-th class. m is the total number of classes, and |yi| denotes
the number of instances belonging to class i.

Cohen’s kappa (k) is a standard and well-acceptedmeasure of the accuracy of a classifier. It expresses the degree of agreement
or disagreement between two instances. The generalized expression to measure the kappa (k) value for m classes is (17):

Cohen′s Kappa (k) =
p0 − pe

1− pe
(5)

Where p0 is the total probability of agreement while pe is the proportion of agreement expected.
Themore the value of Ac, Pr, Rc, F, and k, the better themodel’s performance.The outputs and the values of these fivemetrics

obtained against each classifier were stored in arrays. The performance evaluator selected the best performing classifier based
on the highest average value (Avg) of these five metrics, and the output of the best classifier was selected for nutrient index
estimation.

2.2.3 Nutrient index estimator
The nutrient index estimator was designed using modified Parker’s method (18). This method uses the number of samples
categorized in each of the three classes, low, medium, and high, as inputs to estimate the nutrient index.The number of samples
in each of the three classes is multiplied by 1, 2, and 3, respectively.The sum of the products is then divided by the total number
of samples to obtain the nutrient index. The nutrient index (IN) of a nutrient is defined as:

Nutrient Index (IN) =
(nl ×1 +nm ×2+nh ×3)

(nl +nm +nh)
(6)

Where nl is the number of samples in the low group, nm is the number of samples in the medium group, and nh is the number
of samples belonging to the high group.
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2.2.4 Empirical case studies
Several real field case studies were conducted to estimate the nutrient index for different villages in the state of West Bengal.
West Bengal is one of India’s most agriculturally productive states, producing 2856 million tons of food grains in 6.41 million
hectares of land (19). It is one of the most fertile regions in India, where the agriculture sector contributes to about 20% of the
state’s Gross State Value Added (GSVA) (19). Moreover, no such studies have been reported in this state.

The case studies for six villages from three districts, Purulia, Bankura, andWest Midnapur inWest Bengal, are presented for
illustration. These three districts in the undulating lateritic region of West Bengal were chosen because of adequately available
SHC datasets and high cropping intensity (20). The cropping intensity of Purulia, Bankura, and West Midnapore are 118, 164,
and 168 percent, respectively (20). The selected case studies on the three vital nutrients, S, Zn, and Cu, are presented because no
work has been reported so far.

Datasets were collected for Balia and Chakulia villages in Purulia, Andharthaul, and Chaitali villages in Bankura, and
Gopalnagar andHariatara villages inWestMidnapore districts from the SHC repository (11). TheSHCdatasets contained values
of required physical parameters and nutrients. For training, validation, and testing of the classifiers, the village level datasets
were labeled as per the guideline of the concerned authority (14). The total number of samples and the set of input parameters
used to classify the groups (low, medium, and high) of these three nutrients are presented in Table 2.

Table 2. Summary of the used samples with input parameters.
Nutrients Total number of samples Input parameters
Sulphur (S) 581 pH, OC, EC, N, P, K, Zn, Fe, Cu, B, Mn
Zinc (Zn) 640 pH, OC, EC, N, P, K, S, Fe, B, Cu, Mn

Copper (Cu) 695 pH, OC, EC, N, P, K, S, Zn, Fe, B, Mn

The values of five performance metrics for each classifier against S, Zn, and Cu were evaluated by the performance evaluator
using equations 1-5. The experimentally obtained values of weighted accuracy (Ac), weighted precision (Pr), weighted recall
(Rc), weighted F-score (F), and Cohen’s kappa (k) along with their average values (Avg) against these three nutrients; S, Zn, and
Cu are presented in Table 3.

Table 3. Experimental values of Ac, Pr, Rc, F, k, and Avg obtained against the fifteen classifiers for S, Zn, and Cu.
Metrics LGR RIC PAC GNB MLP KNN DTC BDT ADA GBC LGB CAB XGB EXT RFC

Sulphur

Ac 0.726 0.694 0.635 0.715 0.672 0.672 0.809 0.883 0.819 0.859 0.886 0.910 0.874 0.903 0.899
κ 0.452 0.388 0.280 0.428 0.342 0.342 0.613 0.762 0.635 0.715 0.770 0.817 0.746 0.802 0.794
F 0.726 0.695 0.601 0.715 0.671 0.671 0.805 0.881 0.818 0.857 0.885 0.909 0.873 0.901 0.897
Pr 0.727 0.695 0.778 0.716 0.673 0.673 0.814 0.884 0.819 0.860 0.886 0.910 0.874 0.904 0.900
Rc 0.726 0.694 0.655 0.714 0.671 0.671 0.806 0.881 0.817 0.857 0.885 0.909 0.873 0.901 0.897
Avg 0.672 0.633 0.590 0.657 0.606 0.606 0.769 0.858 0.782 0.830 0.862 0.891 0.848 0.882 0.877

Zinc

Ac 0.755 0.744 0.496 0.732 0.500 0.500 0.847 0.869 0.884 0.889 0.903 0.881 0.878 0.891 0.884
κ 0.508 0.486 -0.008 0.463 0.000 0.000 0.695 0.739 0.768 0.776 0.804 0.761 0.754 0.782 0.768
F 0.754 0.743 0.320 0.732 0.358 0.358 0.848 0.870 0.884 0.888 0.902 0.880 0.877 0.891 0.884
Pr 0.756 0.745 0.436 0.732 0.272 0.272 0.848 0.870 0.884 0.891 0.903 0.882 0.878 0.891 0.884
Rc 0.754 0.743 0.475 0.732 0.522 0.522 0.848 0.870 0.884 0.888 0.902 0.880 0.877 0.891 0.884
Avg 0.705 0.692 0.344 0.678 0.330 0.330 0.817 0.843 0.861 0.866 0.883 0.857 0.853 0.869 0.861

Copper

Ac 0.874 0.874 0.829 0.863 0.884 0.884 0.870 0.923 0.926 0.937 0.958 0.937 0.944 0.937 0.937
κ 0.747 0.747 0.656 0.726 0.768 0.768 0.740 0.846 0.853 0.874 0.916 0.874 0.888 0.874 0.874
F 0.873 0.874 0.824 0.862 0.884 0.884 0.870 0.923 0.926 0.937 0.958 0.937 0.944 0.937 0.937
Pr 0.876 0.876 0.861 0.877 0.887 0.887 0.878 0.923 0.926 0.937 0.958 0.937 0.944 0.937 0.937
Rc 0.874 0.874 0.828 0.863 0.884 0.884 0.870 0.923 0.926 0.937 0.958 0.937 0.944 0.937 0.937
Avg 0.849 0.849 0.800 0.838 0.862 0.862 0.846 0.907 0.912 0.924 0.949 0.924 0.933 0.924 0.924

Average Accu-
racy Score

0.785 0.771 0.653 0.770 0.685 0.685 0.842 0.892 0.876 0.895 0.916 0.909 0.899 0.910 0.907

The experimental results in Table 3 depict that the Categorical boost classifier (CAB) is the best performing one for the
classification of S with Avg = 0.891.Therefore, the outputs of the CAB classifier were considered by the nutrient index estimator
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to estimate the value of the nutrient index of S (IN (S)) using equation 6. Similarly, the nutrient indexes of Zn (IN (Zn)) and
Cu (IN (Cu)) were obtained using the outputs of the best performing Light gradient boost classifier (LGB). The actual values
obtained from the concerned authority and the experimentally found values of village level nutrient index (IN) for S, Zn, and
Cu are presented in Table 4. To quantify the goodness of fit of the predicted values with the observed values, the accuracy
percentages of estimation were measured and are presented in Table 3.

Table 4.The actual values, estimated values and the estimation accuracy (%) of village level nutrient index (IN) for S, Zn, and Cu.
Nutrient Index Villages Actual value Estimated value Estimation accuracy (%) Average estimation accuracy (%)

I N(S)

Balia 1 0.909 90.90

90.66

Chakulia 1 0.891 89.10
Andharthaul 1.25 1.138 91.04
Chaitali 1.14 1.037 90.96

Gopalnagar 1 0.91 91.00
Hariatara 2 1.819 90.95

I N(Zn)

Balia 1.5 1.355 90.33

89.63

Chakulia 1.5 1.325 88.33
Andharthaul 2 1.805 90.25
Chaitali 2 1.766 88.30

Gopalnagar 1.11 1.002 90.27
Hariatara 1 0.903 90.30

I N(Cu)

Balia 2 1.898 94.90

95.48

Chakulia 2 1.898 94.90
Andharthaul 2 1.915 95.75
Chaitali 2 1.915 95.75

Gopalnagar 1.66 1.59 95.78
Hariatara 2 1.916 95.80

Overall accuracy (%) 91.92

3 Results and Discussion
It is revealed fromTable 3 that for the estimation of S, the Categorical boost classifier (CAB) yielded the highest average accuracy
of classification (Avg = 0.891). However, the Extremely randomized tree classifier (EXT) also had nearly equal performance (Avg
= 0.882). For the estimation of Zn andCu, a clear dominance of the Light gradient boost (LGB) classifier was observed.The LGB
took precedence over the other classifiers, with Avg = 0.883 for Zn and Avg = 0.949 for Cu, respectively. It can be inferred from
the experimental results that tree-based ensembles such as the Categorical boost (CAB) and Extremely randomized tree (EXT)
classifiers performed best for nutrient index estimation of S. In contrast, the Light gradient boost (LGB) yielded the highest
average classification accuracy for Zn and Cu estimation. Other tree-based models such as Categorical boost (CAB), Extremely
randomized tree (EXT), Extreme gradient boost (XGB), and Random Forest (RFC) exhibited nearly equal performances for
both Zn and Cu. The experimental results indicate that the tree-based ensembled classifiers with boosting and/or bagging
techniques are the best choice for village level nutrient index estimation.

It is observed from Table 4 that the highest average percentage of estimation accuracy (95.48%) was achieved in the case of
Cu. Nearly equal performances are observed in the case of the other two nutrients, S (90.66%) and Zn (89.63%). The overall
average percentage of estimation accuracy is measured as 91.92 %.These results authenticate the fitness of the proposed model.

The classification performance of our proposedmodelwas comparedwith the other four contemporaryMLmodels proposed
by Keerthan et al. (21), Chaudhari et al. (22), Suchitra and Pai (10), and Pant et al. (23). These models were designed using different
techniques for various targeted nutrients other than S, Zn, and Cu. To compare the performances of these models, model
accuracy was considered as the criterion of comparison.The average accuracy score was used for better comparison because all
fourmodels used different classifiers, but the accuracy scorewas considered themetric for evaluating classification performance.
Table 5 presents the average accuracy scores of the other four similar models and our model. The accuracy scores of the three
best-performing classifiers in the classifier assembly have been considered to obtain the average accuracy score of our model.
The average accuracy score is plotted against each of the five models as presented in Figure 2. Figure 2 depicts that our model
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(with the highest average accuracy score of 0.911) outperformed the other models.

Fig 2. Comparative performances of other four similar models along with that of our model

Table 5.The average accuracy scores of the five models.
Models Year Classifiers used Accuracy score Average accuracy score

Model-1 (21) 2019
Random Forest 0.727

0.622Support vector machine 0.633
Gaussian Naïve Bayes 0.508

Model-2 (22) 2020

Decision tree 0.600

0.509
Support vector machine 0.446
k-Nearest Neighbour 0.559

Naïve Bayes 0.430

Model-3 (10) 2020

ELM-tanh 0.821

0.812
ELM-sinsq 0.782
ELM-tribas 0.782
ELM-hardlim 0.821
ELM-grbf 0.855

Model-4 (23) 2021
ANN-ReLU 0.901

0.888
ANN-tanh 0.876

Model-5 (Our model) 2022
LGB 0.916

0.911EXT 0.910
CAB 0.909

4 Conclusion
This innovative technique of applying classifier assembly serves as the base for designingmore efficient and adaptiveMLmodels.
The empirical study concludes that instead of arbitrarily selected classifiers, an assembly of diverse classifiers is more efficient in
designing an ML model to estimate the nutrient index better using the soil datasets. The classifier assembly always ensures the
highest possible performance of the model. For example, in the case of S, the Categorical boost classifier (CAB) was selected
as the best one to give the highest average accuracy, Avg = 0.891. However, in the case of Zn and Cu, the Light gradient boost
(LGB) classifier is the best performing, with Avg = 0.883 for Zn and Avg = 0.949 for Cu, respectively.

The proposed model estimates the nutrient index of a nutrient using freely available soil datasets that make it an affordable
alternative to costly laboratory or sensor-based systems. It will be helpful to the agricultural administration to address nutrient
deficiency issues. It offers an elegant solution to rural farmers in developing countries like India.
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Our future attempt is to develop a machine learning-based integrated fertilizer recommendation system (IFRS) for the
marginal farmers in India using the village level nutrient index.
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