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Abstract
Objectives: The primary goal of this paper is to study the influence of
MHD and micropolar fluid on the squeeze film lubrication between stepped
porous parallel plates. Method: The non-Newtonian micropolar fluid MHD
Reynolds type equation is derived by considering the flow of micropolar fluid
in the porous matrix as described by Darcy’s law, as well as microstructure
additives and magnetic effects associated with the magnetization of the fluid.
The numerical solutions are presented graphically for the MHD squeeze film
characteristics for various values of coupling number parameter, characteristic
material length, and magnetic Hartmann number. Findings: According to the
results, the micropolar fluid and the magnetic effects significantly influence
the squeeze film characteristics. Comparing the MHD micropolar fluid impact
on the squeeze film lubrication with the corresponding Newtonian and
non-magnetic cases, we observe that there is a significant increase in the
approaching time and the load-carrying capability. The increase in the step
height decreases the squeezing film time. Novelty: The original research
was conducted on the magneto-hydrodynamic micropolar fluid squeeze film
lubrication between stepped porous parallel plates which has not been
studied so far. The effect of applied magnetic field is to enhance the load
carrying capacity and delayed time of approach which are the most desirable
characteristics for improving the bearing performance.
Keywords: Squeeze Film; Stepped plates; Magnetohydrodynamic; Porous;
Micropolar

1 Introduction
Gears, machine tools, gyroscopes, wet-clutch plates, automotive engines, aircraft
engines, and the mechanics of synovial joints in humans and animals are only a few of
the applications for squeeze filmbearings in applied sciences and industrial engineering.
The lubricating surfaces move towards each other in the normal direction, forming
a squeeze film, developing positive pressure, and thus supporting a load. As the two
surfaces move towards each other, a viscous lubricant between them cannot easily be
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squeezed out. This process has a cushioning effect on the bearing. The time it takes for the lubricant to squeeze out depends on
the configuration of the bearing surface, properties of fluids, the load applied, and other factors. At the earlier stage, numerous
researchers have analyzed the Newtonian fluid squeeze film lubrication of bearings. Researchers were attracted to porous
bearings by their simple structure and low cost. The use of porous bearings in mounting horsepower motors is widespread,
including inwater pumps, tape recorders, vacuum cleaners, sewingmachines, shavingmachines, record players, coffee grinders,
hair dryers, generators, and distributors. The squeezing flow has been analyzed by various researchers between parallel and
rectangular plates. Hays (1) analysed the normal approach of curved and flat rectangular plates separated by a thin film of
lubricant. Hai Wu (2) theoretically studied the squeeze film between porous rectangular plates. The flow between parallel plates
receding or approaching each other symmetrically is investigated by Singh et.al. (3).Characteristics of squeeze film between
porous parallel stepped plates for micropolar fluid have been theoretically described by Siddanagouda (4). Naduvinamani
et.al. (5) presented the effect of pressure-dependent viscosity on the squeeze film behavior between rough parallel plates with
couplestress fluid. Patel and Deheri (6) studied the impact of surface roughness and slip velocity on the performance of the
Jenkins model based ferrofluid squeeze film in curved annular plates. Hanamagowda et.al. (7) proposed the study of the impact
of pressure-dependent viscosity andmicropolar fluids on squeeze film circular stepped plates.Madalli (8) analyzed the viscosity-
dependent parameters of non-Newtonian couplestress fluid between parallel porous plates. Hanumagowda et.al. (9) presented
the squeeze film lubrication between circular stepped plates with the combined effect of pressure-dependent viscosity and
surface roughness. Anagod et.al. (10) investigated the squeeze film behavior of rough elliptical plates with micropolar fluid.
Jahan et.al. (11) and Hanumagowda et.al. (9) derived the stochastic Reynolds equation to analyze the piezo viscous dependency
effect on the squeeze film behavior of the rough annular plates and porous circular stepped plates. Goud et.al. (12) studied the
mass and heat transport phenomena associated with micropolar fluid flow over a vertical Riga plate.

The microploar fluid model was first introduced by Eringen (13). The study of fluids containing tiny particles, such as
polymers, suspended fluids, paints, animal blood, lubricants with additives, etc., can be done using Eringen’s (13) micropolar
fluids theory. Numerous industrial applications of the research of micropolar fluids include the extrusion of polymer fluids,
colloidal and suspension solutions, the cooling of metallic plates, exotic lubricants, and the solidification of liquid crystals. The
MHD lubrication has been developed because a liquid metal lubricated bearing’s load can be enhanced when a magnetic field
is introduced. Because of their high conductivity, liquid metals have recently attracted considerable attention. Several types of
magnetohydrodynamic bearings have been developed in recent years. The study of the interaction between conducting fluids
and electromagnetic phenomena is known as magnetohydrodynamics. The magnetic field is a major element in conditioning
and controlling tribological properties. According to recent research, applying a magnetic field to the friction contact can
increase the partial pressure of oxygen on the rubbing surface, resulting in the formation of a friction-reducing oxidation
film. Application of magnetohydrodynamic lubrication to liquid metals has been analysed by Hughes (14). Kuzma et.al. (15)
investigated experimentally and theoretically themagnetohydrodynamic squeeze films and Hamza (16) studied the motion of
an electrically conducting fluid film squeezed between two parallel disks. Lin et.al. (17) performed squeeze film characteristics
between curved circular plates lubricated with an electrically conducting non-Newtonian fluid in the presence of external
magnetic fields. Saeed Islam et.al. (18) investigated the heat transmission and the magnetohydrodynamic flow of a micropolar
hybrid nanofluid between two surfaces inside a rotating system. Halambi and Hanumagowda (19) theoretically investigated
the effect of micropolar lubricant on the squeeze film lubrication between elliptical plates under the influence of an applied
magnetic field. Shah et.al. (20) analysed the flow of non-isothermal micropolar fluid over a nonlinear extending surface with
Cattaneo-Christov heat flux model. Later shah et.al. (21) investigated the entropy generation in MHD flows of water based silver
and copper nanofluids. Biradar et.al. (22) carried out the study on the squeeze film characteristics by considering the MHD and
couplestress effect on the porous curved annular circular plates.Thenumerical analysis ofMHDboundary layer non-Newtonian
micropolar fluid due to an exponentially curved stretching sheet is derived by Hong Shi et.al. (23). Agarwal et.al. (24) studied the
magnetohydrodynamic micropolar fluid flow in a permeable channel with thermal radiation. Ullah et.al. (25) analyzed the flow
of micro-polar nano-fluid between parallel plates with the effects of electric and magnetic fields.

As per the literature known, so far, no research has been conducted on the MHD micropolar fluid squeeze film lubrication
between porous parallel stepped plates. As a result, this study attempted to analyze the influence of MHD on the squeeze film
lubrication between porous parallel stepped plates lubricated with micropolar fluid using Eringen’s (14) micropolar fluid theory.

2 Mathematical analysis
Figure 1 shows the physical geometry of the squeeze film lubrication of conducting micropolar fluid between parallel porous
stepped plates, where the upper stepped plate is moving closer to the lower porous parallel plate with a velocity V . An external
magnetic field of strength Bo is applied along the y-direction. The basic equations describing the flow of an incompressible
non-Newtonian micropolar fluid with an external magnetic field Bo under the assumption of hydrodynamic lubrication for the
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Fig 1. Geometry of the considered problem

thin film are given by

∂v
∂y

+
∂u
∂x

= 0 (1)

(χ
2
+µ

) ∂ 2u
∂y2 +χ

∂v1

∂y
−σB2

0u =
∂ p
∂x

(2)

∂ p
∂y

= 0 (3)

γ
∂ 2v1

∂y2 −χ
∂u
∂y

−2χv1 = 0 (4)

Where (u, v) are the lubricant velocity components along x and y directions respectively, v1 is micro-rotational velocity, χ and
γare micropolar fluid viscosity coefficients and µ is the classical viscosity coefficient.

The pertinent boundary conditions are
i. At y = h (upper surface of the bearing)

u = 0,v =
∂h
∂ t

v1 = 0 (5a)

ii. At y = 0 (lower surface of the bearing)

u = 0,v = v∗

v1 = 0 (5b)

From Eqs. (2) and (4) eliminate v1, we obtain

∂ 4u
∂y4 −α

∂ 2u
∂y2 +βu = f (x) (6)
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where, α =
2(2µχ+γσB2

0)
γ(2µ+χ) ,β =

4χσB2
0

γ(2µ+χ) and f (x) = −4χ
γ(2µ+χ)

∂ p
∂x

Solution of Eq. (6) is

u =C1 Cosh(A1y)+C2 Sinh(A1y)+C3 Cosh(A2y)+C4 Sinh(A2y)+
f
β (7)

By using the expression for u and integrating equation (2), we obtain

v1 = g1C1 Sinh(A1y)+g1C2 [Cosh(A1y)−1]+g2C3 Sinh(A2y)+g2C4 [Cosh(A2y)−1] (8)

Expression for micro rotational velocity is given in Eq. (8) and is solved by integrating Eq. (4) with the expression of u

v1 =C1
A1

2χ
Sinh(A1y) [γg1A1 −χ]+C2

A1

2χ
Cosh(A1y) [γg1A1 −χ]+

C3
A2

2χ
Sinh(A2y) [γg2A2 −χ]+C4

A2

2χ
Sinh(A2y) [γg2A2 −χ]

(9)

where, A1 =

[
α+

√
α2−4β
2

]1/2

,A2 =

[
α−

√
α2−4β
2

]1/2

,g1 =
2σB2

0−(2µ+χ)A2
1

2A1
,g2 =

2σB2
0−(2µ+χ)A2

2
2A2

Expression of u is obtained which by determining the integrating constantsC1,C2,C3 and C4using Eqs (7)-(9) and boundary
conditions (5a)-(5b). Use of expression for u and integrating continuity equation (1) and applying the relative boundary
conditions across film thickness give rise to the non-Newtonian MHD micropolar fluid Reynolds equation in the form

∂
∂x

[
a−b

σB2
0A1A2(c−d)

· ∂ p
∂x

]
=−V − v∗ (10)

Where a = g1A1 Sinh
(

A1h
2

)(
A2hCosh

(
A2h

2

)
−2Sinh

(
A2h

2

))
b = g2A2 Sinh

(
A2h

2

)(
A1hCosh

(
A1h

2

)
−2Sinh

(
A1h

2

))
c = g1 Cosh

(
A2h

2

)
Sinh

(
A1h

2

)
,d = g2 Cosh

(
A1h

2

)
Sinh

(
A2h

2

)
The modified Darcy velocity vector

q⃗ = (u∗,v∗) =
−ϕ ∗

µ +χ
∇p∗ (11)

where p* is pressure and ϕ∗is permeability of the porous matrix. As a result of the continuity of the fluid, the p* satisfies the
Laplace equation

∂ 2 p∗

∂x2 +
∂ 2 p∗

∂y2 = 0 (12)

Over the porous layer thickness δ , integrating eqn.(12) with respect to y then applying solid backing boundary condition(
∂ p∗
∂y = 0

)
at y = -δ , we obtain (

∂ p∗

∂y

)
y=0

=
∫ 0
−δ

∂ 2 p∗

∂x2 dy (13)

At (y = 0) the porous interface, Eq. (13) becomes(
∂ p∗

∂y

)
y=0

=−δ
∂ 2 p
∂x2 (14)

The velocity component v* at the interface (y = 0) is given by

v∗|y=0 =
ϕ ∗δ

µ +χ

(
∂ 2 p
∂x2

)
(15)
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Substituting this in Eq. (11), for micropolar fluids, the modified Reynolds equation is obtained as follows
∂
∂x

[(
a−b

σB2
0A1A2(c−d)

+ ϕ∗δ
µ+χ

)
· ∂ p

∂x

]
=−V

The non-dimensional quantities are,
x = x

L ,h = h
h2
,α = h2

2α,β = h4
2β ,R1 = h2R1,R2 = h2R2,g1 = h2 g1,g2 = h2g2,ψ = Kδ

h3
2
, t = Ut

L , p =
ph3

0
µL2V

The modified Reynolds equation attained in non-dimensional form is

∂
∂x

[(
F
(
h,N,L,M0

)
+ψ

(
1−N2

1+N2

))
∂ p
∂x

]
=−1 (16)

where F
(
h̄,N,L,M0

)
= ā−b̄

M2
0 A1A2(c̄−d̄)
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2
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(
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2

))
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(
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2

)
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(
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2

)
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(
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2

)
Sinh

(
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2

)
g1 = g1h2 =

M2
0(1−N2)−A2

1
2N2A1

, g2 = g2h2 =
M2

0(1−N2)−A2
2

2N2A2

A1 = h2A1 =

(
ᾱ+

√
ᾱ2−4β̄
2

)1/2

,A2 = h2A2 =

(
ᾱ−

√
ᾱ2−4β̄
2

)1/2

ᾱ = αh2
2 =

N2+M2
0(1−N2)L2

L2 , β̄ = βh4
2 =

N2M2
0

L2 ,N =
(

χ
2µ+χ

)1/2
,L =

(
(γ/4µ)1/2

h2

)
,M0 = B0h2

(
σ
µ

)1/2

where N is dimensionless coupling number, L is the characteristic material length. Dimension of L is of length and can
be recognized as a size of microstructure additives available in the lubricant h0 is initial film thickness and M0 is magnetic
Hartmann parameter.

The pertinent pressure boundary conditions are

p1 = p2 at x̄ = K (17a)

p2 = 0 at x̄ = 1 (17b)

The film pressure in non-dimensional form is obtained by solving Eq.(16) with the conditions given in Eqs.(17a) and (17b).

p1 =
K2 − x2

2
[

F1
(
h1,N,L,M0

)
+ψ

(
1−N2

1+N2

)] +
1−K2

2
[

F2 (1,N,L,M0)+ψ
(

1−N2

1+N2

)] (18)

p2 =
1− x2

2
[

F2 (1,N,L,M0)+ψ
(

1−N2

1+N2

)] (19)

The load-carrying capacity w is given by

w = 2b
∫ KI

0 p1dx+2b
∫ L

KL p2dx (20)

The load capacity W in non-dimensional form is:

W =
3wh3

0
2µbV L3 =

 K3

F1
(
h1,N,L,M0

)
+ψ

(
1−N2

1+N2

) +
1−K3

F2 (1,N,L,M0)+ψ
(

1−N2

1+N2

)
 (21)

Letting V = − dh2
dt in Eq. (21), the squeezing time required to reduce the initial thickness h0of h2to final film thickness h f of

h2 is

t̄ =
3w h2

0
2µbL3 =

∫ 1

h f

{
K3

[
G1

(
N,hs,h2,L,M0

)
+ψ

(
1−N2

1+N2

)]−1

+

(
1−K3

)[
G2

(
N,h2,L,M0

)
+ψ

(
1−N2

1+N2

)]−1
}

dh̄2

(22)

https://www.indjst.org/ 2070

https://www.indjst.org/


Naduvinamani & Angadi / Indian Journal of Science and Technology 2022;15(40):2066–2076

where G1
(
N,hs,h2,L,M0

)
= a1−b1

M2
0 A1A2(c1−d1)

a1 = g1A1 Sinh
(

A1(hs+h2)
2

)(
A2

(
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(
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2
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2
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−2Sinh
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2

))
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(
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2

)
Sinh
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2

)
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)
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(
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2

)(
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(
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(
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(
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2
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(
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2

)
,d2 = g2 Cosh

(
A1h2

2

)
Sinh

(
A2h2

2

)
h f =

h f
h0
,h2 =

h2
h0
,hs =

hs
h0

3 Result and discussion
In this study, the lubrication of squeezing film between stepped porous parallel plates lubricated with micropolar fluid in
the existence of applied magnetic field M0 is predicted. MHD and micropolar fluid effect on the squeeze film performance
is determined by the parameters the characteristics length L, coupling number N, Hartmann parameter M0 and permeability
parameter ψ .The coupling numberN denotes the coupling between the rotational andNewtonian viscosity. Angular and linear
momentum equations get decoupled whenN is identically zero and the linearmomentum equation brings down to the classical
Navier-Stokes equations. The influence of an externally applied magnetic field is represented by the magnetization Hartmann
number M0. The permeability parameter is used to investigate the squeeze film performance of stepped porous parallel plates.
It is noticed that the problem is limited to the solid case as ψ → 0 and limited to the corresponding Newtonian case as N,L → 0

In the limiting condition, as M0 → 0 the problem brings down to the non-magnetic case of lubricant studied by
Siddangouda.[4]

3.1 Magnetohydrodynamic Micropolar fluid Load- Carrying Capacity

Thedimensionless load-carrying capacity variationwith the non-dimensional film thickness h̄for various values of, N,L,M0 and
at two distinct values of permeability parameter ψ is presented in Figure 2. When compared to the non-magnetic condition,
a magnetic field increases the load on the squeezing film. Furthermore, the impact of the micropolar fluid increases W as
compared to the Newtonian condition. For a porous case (ψ = 0.01), compared to a solid case, the permeability parameter
diminishes the load capacity. Increasing values of N, L, M0, and increases the load capacity of the stepped plates.

Fig 2. Variation of non-dimensional load W with h̄ for different values of N, L, M0with K = 0.5
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Fig 3. Variation of non-dimensional load W with ψfor different values of and N, L, M0 with H = 0.4, K = 0.5

Figure 3 illustrates the variation ofW with respect to the permeability parameter for distinct values of N, L, M0. It is noticed
in the graph that there is increase in the value ofW for increasing values of N, L, M0, compared to the Newtonian case. For both
micropolar and magnetic cases, the load carrying capacity gradually decreases with increasing values of ψ . Figure 4 describes
the variation of W with dimensionless film thickness for varied values of K. The load is maximum in solid case (ψ = 0)as
compared to that of porous case (ψ = 0.01).

Fig 4. Variation of non-dimensional load W with h̄ for different values of K with L = 0.15, N = 0.5, M0 = 5

3.2 Magnetohydrodynamic micropolar fluid Squeezing Film Time

The time of approach, to reduce the initial film thickness of h2 of h0 a final value h f , is an important feature of the squeeze film
bearing.The non-dimensional squeeze film time t̄ variation with final film thicknessh f is shown in Figure 5. Increasing values of
N, L, M0, increases the load capacityW as compared to the Newtonian case. In porous case (ψ = 0.01)effect of permeability
parameter diminishes the approaching time in comparison with the corresponding solid case (ψ = 0).

Figure 6 denotes the variation of twith ψ for varied values of N, L, M0 . We find that there is decrease in the squeeze film
time with increasing values of ψ as stepped parallel plates approach each other. The varying values of tas a function of h f for
distinct values of K is plotted in Figure 7. A decrease in fluid film thickness with decreasing value of K is found to lead to an
increase in the value of squeeze film time. When compared with a non-porous case, the response time decreases for stepped
porous parallel plates. The variation of twith h f for varied values of hsstep height ratio is shown in Figure 8. Increase in the
squeeze film time tcan be observed by decreasing step height ratios hs. Solid cases have an increased value of t as compared to
porous cases.
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Fig 5. Variation of non-dimensional time of approach t̄ with h f for different values of N, L and M0with K = 0.6.

Fig 6. Variation of non-dimensional time of approach with ψfor different values of N, L and M0 with K = 0.6,

Fig 7. Variation of non-dimensional time of approach t̄ with h f for different values of K with N = 0.4, L = 0.4, M0 = 3, and hs = 0.15.
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Fig 8. Variation of non-dimensional time of approach t with h f for different values of hs with N = 0.4, L = 0.4, M0 = 3, and K = 0.6.

Table 1 represents the relative percentage increase due tomagnetic effect in load carrying capacity Rw∗ , for two distinct values
of ψ and Hartmann numberM and is given by the relation RW ∗ =

W ∗
magnefic −W ∗

non-magnetic
W ∗

non-magnetic
×100. It is observed that, forM= 5, h =

1 the load capacity increases by 156.5% and 49.5% as compared to the non-magnetic case for ψ = 0.01 and 0.1 respectively.
It is concluded that increasing value of the permeability parameter diminishes the load capacity.

Table 1.The variation of relative Load Rw∗ for the various values of ψand M0

ψ h M0 = 3 M0 = 5 M0 = 7.5 M0 = 10

0.01

0.6 48.07 118.25 218.01 310.54
1.0 63.472 156.47 289.40 413.52
1.4 67.173 165.89 307.87 441.61

0.1
0.6 22.38 41.67 57.13 65.77
1.0 26.69 49.498 67.59 77.624
1.4 30.22 55.87 76.18 87.42

Table 2 represents the relative percentage increase due to magnetic effect in dimensionless squeeze film time Rt∗ for distinct
values of ψand Hartmann number M and is given by the relation. Rt∗ =

t∗magnetic −t∗non-magnetic
t∗non-magnetic

×100 . It is observed that, for M =
5, h = 1 the squeeze film time increases by 23.3% and 2.9% in comparison with the non-magnetic case for ψ = 0.01 and 0.1
respectively.

Table 2.The variation of relative time Rt∗ for the various values of ψ and M0.
ψ h f M0 = 3 M0 = 5 M0 = 7.5 M0 = 10

0.01

0.4 8.379 15.90 22.23 25.901
0.6 12.45 23.30 32.11 37.074
0.8 18.47 33.918 46 52.627

0.1
0.4 1.25 2.13 2.76 3.094
0.6 1.769 2.973 3.798 4.216
0.8 2.59 4.239 5.296 5.811

4 Conclusion
Usingmicropolar fluids and appliedmagnetic fields, this study examines the squeeze film lubrication of stepped porous parallel
plates. In the limiting case as N,L→ 0, the results ofNewtonian case can be recovered. From the results discussed in the previous
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section the following conclusions are drawn:

1. The enhanced load carrying capacity and delayed time of approach are observed for the micropolar fluids in comparison
with the Newtonian case.

2. The effect of applied magnetic field increases W and t̄.
3. The presence of porous facing on the bearing surface decreasesW and t̄. However, the proper choice of lubricant additive

and strength of applied magnetic field, this loss can be compensated and the performance of the squeeze film can be
improved.

5 Nomenclature

h dimensionless mean film thickness (=h/h2)
h1 maximum film thickness
h2 minimum film thickness
hs step height (=hs/h0)
KL step position, 0<K<1.
L dimensionless characteristic length

(
= (γ/4µ)1/2/h2

)
N coupling number

(
= (χ/χ +2µ)1/2

)
Mo Hartmann number
p film region pressure
p expected value of p
P dimensionless pressure, P =

p̄h3
2

µV L2

p1 pressure in the region 0 ≤ x ≤ KL.
p2 pressure in the region KL ≤ x ≤ L .
t squeeze film time
t Non-dimensional squeeze film time

(
=

2w h2
0t

3µbL3

)
V squeezing velocity
w load carrying capacity
W non-dimensional load carrying capacity

(
=

2W h3
2

3µbVL3

)
χspin viscosity
δ thickness of porous layer
γ viscosity coefficient of micropolar fluids
µ Newtonian viscosity coefficient
ϕ ∗ permeability
ψ permeability parameter

(
= ϕ ∗δ/h3

2
)
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