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Abstract
Objective: To investigate the free vibrations in a rotating elastic hollow solid
sphere.Method: The method of plane harmonic solution is employed to solve
the basic governing equations of rotating elastic solid. Findings: Three types
of frequency equations named as coupled frequency (CF) (Radial and tangen-
tial) equations, radial frequency (RF) equation and tangential frequency (TF)
equations are derived. Novelty: Under the MATLAB program, the numerical
computations have been performed for a particular material. Frequency ver-
sus angle is shown graphically for rotating and non-rotatingmaterial. TF and CF
curves are inverse proportional to the angular rotation. Coupled frequencies
are slower than the tangential frequencies.

Keywords: Free Vibrations; Rotation; Hollow sphere; Radial frequencies;
Tangential frequencies and Coupled Frequencies

1 Introduction
The study of free vibrations in a generalized elastic solid has been a subject of extensive
investigation in the literature. It is of great importance of variety applications in many
engineering fields like Aerospace, Civil, Mechanical, Navel, Chemical and Nuclear
Engineering. The generalized theory of elasticity has drawn widespread attention
because it removes the physically unacceptable situation of the classical theory of
elasticity. Some of spherical or a part of spherical shape structures are saturated soil,
osseous tissues, sedimentary rocks and human body.The generalized theory of elasticity
such as thermo elasticity was developed by Lord-Shulman (1),Green –Lindsay (2). The
effect of non-locality on free vibrations in a thermo-elastic hollow cylinder with
diffusion was studied by Dinesh Kumar Verma et.al. (3). Forced axisymmetric vibrations
in an inhomogeneous piezoceramic hollow sphere are investigated by Grigorenko and
Loza (4). Hamdy (5) studied the effects of mechanical damage, radial distance, diffusion
on Lord-Shulman’s thermo elastic sphere. Eman (6) presented vibration analysis of
a nanobeam due to a ramp type heating under Moore-Gibson-Thompson theory
of thermo-elasticity. Free vibrations in the visco-thermo elastic hollow sphere are
presented by Dinesh Kumar sharma and Himani Mittal (7) .
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Some of authors like Somaiah (8) and Somaiah and Chandulal (9) arestudied the rotation effect on radial vibrations, and
inhomogeneous and attenuation waves respectively.

This present paper is arranged in the following manner. Governing equations are presented and solved in section 2, results
and discussion are given with the help of MATLAB software in section 3 and overall conclusion in section 4.

2 Methodology

With the usual notations of Eringen (10) the constitutive equations and field equations of rotating elastic solid in the absence of
body forces are

(λ +2µ +K)∇∇ · u⃗− (µ +K)∇× (∇× u⃗) = ρ
[

∂ 2u⃗
∂ t2 + Ω⃗× (Ω⃗× u⃗)+2(Ω⃗× ˙⃗u)

]
(1)

ti j = λekkδi j +(2µ +K)ei j (2)

where λ , µ Lame’s parameters, K is a material constant, δi j is the Kroneckers delta, ρ is the density of the material. The super
pose dot is the partial differentiation with respect to time t,Ω⃗× (Ω⃗× u⃗) is Centripetal acceleration and 2(Ω⃗× ˙⃗u) is the Coriolis
acceleration and

ei j =
1
2
(ui, j +u j,i) (3)

We consider a homogeneous rotating elastic hollow solid sphere of inner radius a and outer radius b. We use the spherical
coordinates (r,θ ,Φ). The centre of the sphere taken as origin of the coordinate system and sphere is rotating about z-axis with
the angular velocity Ω⃗. So the macro displacement vector −→µ taken as −→u = (ur,uθ ,0) where ur=ur(r,θ , t),uθ = uθ (r,θ , t) are
respectively the displacements components in radial and tangential directions. Angular velocity Ω⃗ taken as Ω⃗ = (0,0,Ω) .

In this case, Ω⃗× (Ω⃗× u⃗)+2(Ω⃗× ˙⃗u) =
(
−Ω2ur −2Ωu̇θ ,−Ω2uθ +2Ωu̇r,0

)
.

With the help of equation (3) and fundamental vector calculus, the equations (1) and (2) reduces in the directions of r,θ as

a1 (e1ur + e2uθ )+a2 (e3ur − e4uθ ) = ρ
[
ür −Ω2ur −2Ωu̇θ

]
(4)

a1 (e5ur + e6uθ )+a2 (e7uθ − e8ur) = ρ
[
üθ −Ω2uθ +2Ωu̇r

]
(5)

trr = (λ +2µ +K)ur,r +λuθ ,θ , trθ = µur,θ +(µ +K)uθ ,r (6)

where ; a1 = λ +2µ +K;a2 = µ +K

e1 =
∂ 2

∂ r2 +
2
r

∂
∂ r

− 2
r2 ; e2 =

1
r

(
∂ 2

∂ r∂θ
+ cotθ

∂
∂ r

)
− 1

r2

(
∂

∂θ
+ cotθ

)
e3 =

1
r2

(
∂ 2

∂θ 2 + cotθ
∂

∂θ

)
; e4 =

2
r2

(
∂

∂θ
+ cotθ

)
+ e2; e5 =

1
r

(
∂ 2

∂θ∂ r
+

2
r

∂
∂θ

)
;

e6 =
1
r2

(
∂ 2

∂θ 2 + cotθ
∂
∂ r

− cosec2 θ
)
, e7 =

∂ 2

∂ r2 − 2
r

∂
∂ r

; e8 =
1
r

∂ 2

∂θ∂ r
;

(7)

To study the propagation of harmonic waves, we seek the solution of the form

ur(r,θ , t) = Aem1rei(qθ−ωt), uθ (r,θ , t) = Bem2rei(qθ−ωt) (8)

where A and B are arbitrary constants, q is the wave number, ϖ is the angular frequency, q = 2π
l , where l is the wave length

and

m1 =
1
2

−X1 ±
(
X2

1 −4X2
)1

2

 , m2 =
1
2

−Y1 ±
(
Y 2

1 −4Y2
)1

2

 (9)
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X1 = 2r−1a−1 − iqr−1 (1−a2a−1
1
)
,X2 = a−1

1
[
c1 +ρ

(
ω2 +Ω2 +2i qΩ

)]
− c2,

Y1 = a1a−1
2

[
d1 + iqr−1]+2a−1

2 r−1 +d2 + iqr−1

Y2 = ρa−1
2

(
ω2 +Ω2 −2i qΩ

)
−q2r−2a−1

2 +a1a−1
2 b1 +b2,

b1 = r−2 cotθ + iq− r−2 (cosecc2θ +1
)
,b2 = r−2(cotθ + iq),

c1 = a2r−2 (iqcotθ −q2) ,c2 = 2
(
r−2 + iqr−1)

d1 = (i− r)r−2 cotθ ,d2 = r−1 cotθ

(10)

Because of equation (9), the solutions (8) reduces of the form

ur(r,θ , t) = [A1ep1r +A2ep2r]ei(qθ−ωt) (11)
uθ (r,θ , t) = [B1eq1r +B2eq2r]ei(qθ−ωt) (12)

where A1, A2, B1, B2 are arbitrary constants and

p1 =
1
2

−X1 +
(
X2

1 −4X2
)1

2

 ; p2 =
1
2

−X1 −
(
X2

1 −4X2
)1

2


q1 =

1
2

−Y1 +
(
Y 2

1 −4Y2
)1

2

 ;q1 =
1
2

−Y1 −
(
Y 2

1 −4Y2
)1

2

 (13)

2.1 Boundary Conditions and Frequency Equations
The solutions of the hollow sphere with different boundary conditions are performed, the mixed boundary conditions which
consist of two kinds of boundary conditions, the inner surface fixed and the outer surface free i.e.,

ur = uθ = 0 at r = a

trr = 0, trθ = 0 at r = b
(14)

Inserting equations (11) and (12) in equation (14), we obtain the following system of homogeneous equations in A1, A2, B1, B2

A1ep1a +A2ep2a = 0,B1eq1a +B2eq2a = 0

A1a1 p1ep1b +A2a1 p2ep2b +B1λ i qeq1b +B2λ i qeq2b = 0

A1i µqep1b +A2i µqep2b +B1a2q1eq1b +B2a2q2eq2b = 0

(15)

The system (15) has non-trivial solutions if and only if∣∣ai j
∣∣= 0; i, j = 1,2,3,4 (16)

where
a11 = ep1a;a12 = ep2a;a13 = a14 = a21 = a22 = 0

a23 = eq1a;a24 = eq2a;a31 = a1 p1ep1b;a32 = a1 p2ep2b;

a33 = λ i qeq1b;a34 = λ i qeq2b;a41 = µi qep1b;

a42 = µi qep2b;a43 = a2q1eq1b;a44 = a2q2eq2b

(17)

The equation (16) is the coupled (radial and tangential) dispersion relation of free vibrations in a rotating hollow sphere.
Special Cases:
(i) When m1 vanishes i.e., p1 = p2 = 0, at r = a,r = b we obtain the dispersion along the tangential direction is given by

ω2 +
(
Ω2 −2i qΩ

)
ρa−1

2
= a1a−1

2 (d1 −b1)+(d2 −b2)+a−1
2 r−1 (q2r−1 +a1i q+2

)
(18)

(ii) When m2 vanishes, i.e.,, q1 = q2 = 0, at r = a,r = b we obtain the dispersion along the radial direction is

ρω2

a1
= X1 + c2 −a−1

1
[
c1a2r−1 +ρ

(
ω2 +2i Ωq

)]
(19)
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3 Results and Discussion
Under the theoretical illustrations presented in the previous sections, we now present some numerical results. The physical
data of the magnesium crystal - like material which modelled as generalized elastic solid is given by Sharma et.al (11); λ =
2.17×1010 N/m2; µ = 1.639×1010 N/m2;ρ = 1.74×103 kg/m3;K = 1.7×102 W/mdeg

The values of angle θ in degree taken as 100 ≤ θ ≤ 240◦ . For computational purpose the radius has been taken r = 10 cm,
natural wave number q of the solid taken as q = 2π/l for wave length l = 10cm. The angular rotation Ω selected as; rotation
I = 0.5×103rps, rotation II = 1×103 rps and rotation III = 5×103 rps. Using MATLAB software, numerical computations
have been performed and variation of frequency for angle are plotted for non rotation and angular rotation I, II and III.

The coupled frequency (CF) curves for non rotation and rotations I, II and III in the given range of angle θ are shown in
figure (1). From this figure we observed that coupled frequencies in non-rotating material are faster than in rotating material.

Fig 1. Coupled Frequency versus angle

Tangential frequencies are shown in figure (2). Also tangential waves in non-rotating material are faster than in rotating
material. Coupled and tangential waves are rapidly jumped at 2100

Fig 2. Tangential Frequency versus angle

The comparative CF and TF curves are shown for non-rotation and the rotations-I, II, III in figures (3) to (6). All the
frequency curves are compared in figure (7).
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Fig 3. Comparative CF and TF curves

Fig 4. Comparative CF and TF curves

Fig 5. Comparative CF and TF curves
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Fig 6. Comparative CF and TF curves

From these figures we observed that tangential waves are faster than coupled waves in rotating and non-rotating solid
materials.

Fig 7. All the frequency curves

From the above graphical study we observed that CF and TF are inverse proportional to the angular rotation of the solid. TF
is faster than to the CF in the non-rotating and rotating solid for free vibrations. All these frequency curves are rapidly jumped
at θ = 210◦.

4 Conclusion
For deriving free vibrations in a hollow solid sphere, the basic equations are converted into spherical coordinates and solved by
themethod of plane harmonic solution.Three types of vibrations named as radial, tangential and coupled (radial and tangential)
are derived for hollow solid sphere. The effect of rotations on free vibrations also discussed. Also we observed that:

• Tangential and coupled vibrations in a non-rotating solid are faster than in rotating solid
• Tangential vibrations are faster than coupled vibrations
• Tangential and coupled vibrations are inverse proportional to the angular rotations of the solid
• The frequencies are rapidly jumped at 2100
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