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Abstract
Objective: The objectives of the present study are to introduce some
new subclasses of analytic functions involving (p,q)-derivatives by using
subordination. We derive Fekete-Szegö inequalities for the functions belonging
to the new subclasses. Method: Using the concept of (p,q)-derivative of
a function and the subordination principle between analytic functions we
introduce and study new subclasses. Findings: The Fekete-Szegö problemmay
be considered as one of the most important results about univalent functions.
It was introduced by Fekete-Szegö in 1933. Coefficient estimates for the second
and third coefficients of functions belonging to class of analytic functions
with specific geometric properties were obtained. We obtain the Fekete-Szegö
inequalities for functions belonging to the new subclasses. Moreover, some
special cases of the established results are discussed. Novelty: The results of
the paper are new and significantly contribute to the existing literature on the
topic.
Keywords: Analytic functions; Subordination; q-calculus; Fekete-Szegö
inequalities; (p; q)-derivative operator

1 Introduction
Let A specify the category of analytic functions f (z) of the form

f (z) = z+∑∞
n=2 anzn (1)

in the open unit disc U = {z : z ∈C and |z|< 1} .
The q-calculus is a generalization of the ordinary calculus without using the limit

notation.The theory of q-derivative operators are used in describing and solving various
problems in applied science such as ordinary fractional calculus, optimal control, q-
difference and q-integral equations, as well as Geometric function theory of complex
analysis.Thefirst application and usage of the q-calculuswas introduced by Jackson (1,2).
After thatmany researchers have carried out remarkable studies, which play a significant
role in the development of Geometric function theory. One may refer the papers (3–11)
on this subject.

Recently there is an extension of q-calculus, denoted by (p,q)-calculus. The
applications of (p,q)-calculus play important role in many diverse areas of the
Mathematical, Physical and Engineering sciences. Quite a number of mathematicians
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studied the concepts of (p,q)-derivative. For details on (p,q)-calculus one can refer (12–15). For the convenience, we provide some
basic definitions and concept details of (p,q)-calculus which are used in this paper. The (p,q)-derivative of the function f (z) is
defined as (16)

D(p,q) f (z) =
f (pz)− f (qz)

(p−q)z
, (z ̸= 0, 0 < q < p ≤ 1) (2)

From equation (2) it is clear that if f (z) and g(z) are two functions, then

D(p,q) ( f (z)+g(z)) = D(p,q) f (z)+D(p,q)g(z) .

D(p,q) (c f (z)) = cD(p,q) f (z) .

Note that D(p,q) f (z)→ f
′
(z) as p =1 and q → 1−, where f

′
(z) is the ordinary derivative of the function f (z) . Further by (2)

the (p,q)-derivative of the function h(z) = zn, is as follows

D(p,q)h(z) = [n](p,q)z
n−1 (3)

where [n](p,q) denotes the (p,q)-number and is given as:

[n](p,q) =
pn −qn

p−q
, ( 0 < q < p ≤ 1 ) . (4)

Note that [n](p,q) → n as p =1 and q → 1−, therefore in view of equation (3), D(p,q)h(z) = h
′
(z) as

p =1 and q → 1−, where h
′
(z) denotes the ordinary derivative of the function h(z) with respect to z .

The (p, q)-derivative of the function f (z), given by equation (1) is defined as

D(p,q) f (z) = 1+∑∞
n=2 [n](p,q)anzn−1 ( 0 < q < p ≤ 1 ) (5)

where [n](p,q) is given by (4).
For the analytic functions f (z) and g(z) in U , we say that the function g(z) is subordinate to f (z) in U (17), and write

g(z)≺ f (z) if there exists a Schwarz function ω(z), which is analytic inU, with ω(0)=0 and |ω(z)|<1 such that

g(z) = f (ω (z)) , (z ∈U) . (6)

Let P denote the class of all functions φ (z) which are analytic and univalent inU and for which φ (z) is convex with φ (0) = 1
and R{φ(z)}> 0 for all z ∈ U.

Now using the concept of (p,q)-derivative of a function f (z)εA and the subordination principle between analytic functions
we introduce new subclasses of A as follows.

Definition 1.1: A function f (z) ∈ A is said to be in the class R(p,q) (φ) if it satisfies the following subordination condition

D(p,q) ( f (z))≺ φ (z) (7)

where φ(z) ∈ P and 0 < q < p≤1.
Definition 1.2:A function f (z) ∈ A is said to be in the class N(p,q) (φ) if it satisfies the following subordination condition

(1−α)
f (z)

z
+α D(p,q) ( f (z))≺ φ (z) (8)

where φ (z) ∈ P and 0≤ α ≤1, 0< q < p≤1.
Note that for p=1, we have R(p,q) (φ) = R(q) (φ) (18) and N(p,q) (φ) = N(q) (φ) (18) respectively.
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2 Main results

The Fekete-Szegö problem (19) is to obtain the coefficient estimates for the second and third coefficients of functions belonging
to class of analytic functions with a specific geometric properties. Now we find the Fekete-Szegö inequalities for functions
belonging to the classes R(p,q) (φ) and N(p,q) (φ) .

The following lemma is necessary to prove our main results.
Lemma 2.1. (20) Let p(z) = 1+∑∞

n=1 cnzn, (z ∈ U) be a function with positive real part inU and µ is a complex number,
then (

c2 −µ c2
1

∣∣≤ 2max{1; (2µ −1|} . (9)

The result is sharp for the functions given by p(z) = 1+z
1−z and p(z) = 1+z2

1−z2 .
Theorem 2.1: Let φ (z) = 1+B1z+B2z2 + . . .ε P, with B1 ̸= 0. If f (z) given by (1) belongs to the class R(p,q) (φ) then

(
a3 −µ a2

2

∣∣≤ B1

[3]p,q
max

{
1,

(
B2

B1
−

[3]p,qµB1

[2]2p,q

∣∣∣∣∣
}

(10)

where µ is a complex number, and 0 < q < p≤1. The result is sharp.
Proof: If f (z)ε R(p,q) (φ) , then in view of Definition (1.1) there is a Schwarz function ω (z) in U with ω (0) = 0 and

|ω (z)|< 1 inU such that

D(p,q) ( f (z)) = φ (ω (z)) . (11)

We define the function

p(z) =
1+ω (z)
1−ω (z)

= 1+ p1z+ p2z2 + . . . (12)

Since ω(z) is a Schwarz function, we have R{p(z)}> 0 and p(0) = 1. Let

g(z) = D(p,q) f (z) = 1+d1z+d2z2 + . . . (13)

Using equations (11), (12) and (13) we obtain

g(z) = φ
(

p(z)−1
p(z)+1

)
Since

p(z)−1
p(z)+1

=
1
2

(
p1z+

(
p2 −

p2
1

2

)
z2 +

(
p3 +

p3
1

4
− p1 p2

)
z3 + . . .

)
which gives

φ
(

p(z)−1
p(z)+1

)
= 1+

1
2

B1 p1z+
(

1
2

B1

(
p2 −

p2
1

2

)
+

1
4

B2 p2
1

)
z2 + . . . (14)

Using equations (13) and (14) we obtain

d1 =
1
2

B1 p1

d2 =
1
2

B1

(
p2 −

p2
1

2

)
+

1
4

B2 p2
1 .

A simple computation gives

D(p,q) ( f (z)) = 1+(2]p,qa2z+(3]p,qa
3
z2 + . . .
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Inequality (13), yields

d1 = [2]p,qa2

d2 = [3]p,qa3

now comparing the coefficients of z and z2 and simplifying we get

a2 =
B1 p1

2[2]p,q

and

a3 =
B1

2[3]p,q

(
p2 −

p2
1

2

)
+

B2 p2
1

4[3]p,q

hence

a3 −µ a2
2 =

B1

2[3]p,q

(
p2 − γ p2

1
)

where

γ =
1
2

(
1− B2

B1
−

[3]p,qµB1

[2]2p,q

)

Hence, by applying Lemma 2.1, the result follows.
Note that taking p=1 inTheorem 2.1 we get the following result derived in (18).
Corollary 2.1: Let φ (z) = 1+B1z+B2z2 + . . .ε P, with B1 ̸= 0. If f (z) given by (1) belongs to the class R(q) (φ) and µ is

a complex number, then

(
a3 −µ a2

2
∣∣≤ B1

[3]q
max

(
1,

(
B2

B1
−

[3]qµB1

[2]2q

∣∣∣∣∣
}

The result is sharp.
Similarly, we can obtain upper bound for the Fekete-Szegö inequalities for functions belonging to the class N(p,q) (φ) as

follows.
Theorem 2.2: Let φ (z) = 1+B1z+B2z2 + . . .ε P, with B1 ̸= 0. If f (z) given by (1) belongs to the class N(p,q) (φ) then

(
a3 −µ a2

2
∣∣≤ B1

[(1−α)+(3]p,qα]
max

{
1,

(
B2

B1
−

µB1[(1−α)+(3]p,qα ]

[(1−α)+(2]p,qα]2

∣∣∣∣∣
}

where µ is a complex number, and 0 < q < p≤1. The result is sharp.
Proof: If f (z)ε N(p,q) (φ) , then in view of Definition (1.1) there is a Schwarz function ω (z) in U with ω (0) = 0 and

(ω (z)|< 1 inU such that

(1−α)
f (z)

z
+αD(p,q) ( f (z)) = φ (ω (z)) (15)

We define the function

p(z) =
1+ω (z)
1−ω (z)

= 1+ p1z+ p2z2 + . . . (16)
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Since ω is a Schwarz function, we have R{p(z)}> 0 and p(0) = 1. Let

g(z) = (1−α)
f (z)

z
+αD(p,q) ( f (z)) = 1+d1z+d2z2 + . . . (17)

using equations (15), (16) and (17) we obtain

g(z) = φ
(

p(z)−1
p(z)+1

)
Since

p(z)−1
p(z)+1

=
1
2

(
p1z+

(
p2 −

p2
1

2

)
z2 +

(
p3 +

p3
1

4
− p1 p2

)
z3 + . . .

)
which gives

φ
(

p(z)−1
p(z)+1

)
= 1+

1
2

B1 p1z+
(

1
2

B1

(
p2 −

p2
1

2

)
+

1
4

B2 p2
1

)
z2 + . . . (18)

using equations (17) and (18) we obtain

d1 =
1
2

B1 p1

d2 =
1
2

B1

(
p2 −

p2
1

2

)
+

1
4

B2 p2
1

A computation gives

(1−α)
f (z)

z
+αD(p,q)( f (z)) = 1+[(1−α)+ [2]p,qα]a2z+[(1−α)+ [3]p,qα ]a3z2 + . . .

Inequality (17), yields

d1 = [(1−α)+ [2]p,qα ]a2

d2 = [(1−α)+ [3]p,qα ]a3

or equivalently we get

a2 =
B1 p1

2
[
(1−α)+ [2]p,qα

]
and

a3 −µa2
2 =

B1

2 [(1−α)+ [3]p,qα]

(
p2 − γ p2

1
)

hence

a3 −µ a2
2 =

B1

2
(
(1−α)+(3]p,qα

] (p2 − γ p2
1
)

Where

γ =
1
2

(
1− B2

B1
−

µB1 [(1−α)+ [3]p,qα]

[(1−α)+ [2]p,qα]2

)
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Hence, by applying Lemma 2.1, the result follows.
Note that taking p=1 inTheorem 2.2 we get the following result derived in (18).
Corollary 2.2: Let φ (z) = 1+B1z+B2z2 + . . . ∈ P, with B1 ̸= 0. If f (z) is given by (1) belongs to the class N(q) (φ) and

µ is a complex number, then

∣∣ a3 −µ a2
2
∣∣≤ B1

[(1−α)+ [3]qα]
max

{
1,

∣∣∣∣∣B2

B1
−

µB1[(1−α)+ [3]qα]

[(1−α)+ [2]qα ]2

∣∣∣∣∣
}
.

The result is sharp.

3 Conclusion

The q-difference calculus or quantum calculus was initiated at the beginning of 19th century, that was initially developed by
Jackson. The q-calculus is one of the tool which is used to introduce and investigate many number of subclasses of analytic
functions.The quantum calculus has many applications in the fields of special functions and many other areas. Further there is
an extension of the q-calculus to postquantum calculus denoted by the (p,q)-calculus. In this paper we introduce and study new
subclasses of analytic functions defined by using (p,q)-derivative operator.We derive the Fekete-Szegö inequalities for functions
belonging to these classes. Moreover, some special cases of the established results are discussed.
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