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Abstract
Objectives: To find the connected restrained detour number for standard
graphs and mesh graphs.Methods: By determining the connected restrained
detour set with minimum cardinality, the connected restrained detour number
of a graph is investigated. Findings: We study that the connected restrained
detour number of the graphs is altered when we add pendent vertices. The
minimum and maximum degree vertices of a graph are deleted and the
connected restrained detour number of themesh graph is computed.Novelty:
Finding the detour path plays a vital role in the network-based systems.
Planning the largest route that is connected and restrained is essential in
business, industries and radio technologies. We introduce the new concept
of connected restrained detour number. We also exhibit the bounds for the
connected restrained detour set of a graph.
Keywords: Detour Set; Detour Number; Mesh Graphs; Connected Restrained
Detour Set; Connected Restrained Detour Number

1 Introduction
Connected detour number of a graph developed from the notion of detour number
was studied by Ali, Ahmed M, and Ali A. Ali (1). Various parameters of detour number
were established by John J, Sunil Kumar VR, Sethu Ramalingam S and Athisayanathan
S (2–4). In 2020, Palani K, Shanthi P, Nagarajan A. established the restrained detour
concept (5,6). Santhakumaran AP, Titus P, Ganesamoorthy K. defined the minimal
connected restrained monophonic sets in graphs (7) . In this study, we introduce the
connected restrained detour number denoted by dncr (G) . The connected restrained
detour number for some standard graphs and mesh graphs is studied. We denote the
vertices with minimum degree and maximum degree by δ -vertices and△-vertices in a
graph M. We discuss the effect of the addition of pendent vertices to the δ -vertices of
mesh M.We also investigate the connected restrained detour number of derived graphs
obtained from the mesh graphs by deletion of the pendent vertices from the δ -vertices
of the mesh M.

Let G = (V (G) , E (G)) be a connected finite simple graph with order n ≥ 2.
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2 Methodology
Definition 2.1. Any set R ⊆V (G) is a connected restrained detour set if

(i) R is a detour set of G
(ii) ⟨R⟩ is connected and
(iii) no isolated vertices exist in<V (G)−R >
Definition2.2.Theconnected restrained detour number, dncr(G) is theminimumcardinality of connected restrained detour

set of G
Definition 2.3. A connected restrained detour set with cardinality dncr(G) is called the minimum connected restrained

detour set [dncr-set] of G.
Example 2. 4. For G1 shown in Figure 1 , R′ = {z2,z3,z6,z7} ,R′′ = {z2,z3,z6,z8} and R′′′ = {z1,z2,z3,z6}are the dncrsets

of G1.Hence dncr (G1) = 4.Thus there can be many dncrsets for any graph G.

Fig 1. G1

3 Results and Discussion
Theorem 3.1. For a cycleCn (n ≥ 3) ,dncr (Cn) = 2.

Proof. Consider a cycleCn with (V (Cn)|= n. If R = {y,z} is a set of vertices that are adjacent inCn, then all the vertices in
V (Cn) lie on some y− z detour. Since y and z are adjacent, < R > is connected and < V (Cn)−R > has no isolated vertices.
Hence R is a dncr-set and dncr (Cn) = 2.

Theorem 3.2. For a path Pn (n ≥ 2) ,dncr (Pn) = n.
Proof.Consider a pathPn of order n. LetR be a set of end-vertices.Then all the vertices ofPn lie on some detour joining those

two end-vertices of R. Since the vertices of R are not connected,< R > is also not connected but<V (Pn)−R > has no isolated
vertices. Thus R is not a dncr-set. Therefore, R must contain all the internal vertices to generate a dncr-set. Thus dncr (Pn) = n.

Remark 3.3. By Theorem 3.1, for a cycle Cn, a set of any two adjacent vertices is a detour set and also a dncr-set. Hence
dn(Cn) = dncr(Cn) = 2.Thus

2 = dn(G) = dncr(G)< n, forCn (1)

ByTheorem 3.2, for the path Pn of order n,dncr(Pn ) = n.

2 = dn(G)< dncr(G) = n, for P2 (2)

For the given graph G1 of order 8 as in Figure 1, R = (z2,z3,z7} is a minimum detour set.
Hence dn(G) = 3.Thus

2 < dn(G)< dncr(G)< n, for G1 (3)
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Observation 3.4. From (1), (2) and (3) of Remark 3.1, we obtain the bound for a dncr-set.
2 ≤ dn(G)≤ dncr (G)≤ n.
The following theorems exhibit the dncr-set for the cartesian product of any two paths Pa and Pb, which is known as mesh

graph M = Pa □ Pb and their derived graphs.
Theorem 3.5 . Let Pa and Pb be the paths of order a and b. Then dncr (Pa□ Pb) = 2.
Proof. Let M = Pa□ Pb be a mesh, where
V (Pa) = h1, h2, . . . , ha andV (Pb) = h∗1 , h∗2 , h∗3 , . . . , h∗b ;

V (Pa □ Pb) =
((

hi, h∗j
)
= hi j : 1 ≤ i ≤ a, 1 ≤ j ≤ b; hi ∈ Pa , h∗j ∈ Pb

}
.

Then (V (Pa□ Pb)|= ab. Let R be a set of two vertices, which are adjacent in the boundary of the mesh M. We consider four
cases.

Case 1. Let a and b be even. Clearly, every vertex ofM lies on either theP
′
: hk1−h(k+1)1 orP′′ : hkb−h(k+1)b detour, similarly

on eitherP
′′′

: h1l −h1(l+1) orP′′′′ : hrl −hr(l+1) detour for some k, l (1 ≤ k ≤ a−1; 1 ≤ l ≤ b−1) . Suppose S=
(
hk1,h(k+1)1

}
.

Then the vertices of M lie on P′ : hk1 −h(k+1)1 detour (1 ≤ k ≤ b−1) .When k = 1,

P
′
: h11 ,h12,h13, . . . ,h1(b−1), h1b,h2b,h2(b−1), . . . ,h24, h23, h22, h32,h33,h34, . . . ,h3(b−1),h3b,h4b, ..

. . . ,h(a−1)b, hab, ha(b−1), ..,ha3, ha2,ha1,h(a−1)1, ...,h41, h31,h21.

Similarly, we can derive the detour path of P
′′
,P

′′′
and P′′′′, where 2 ≤ k ≤ a−1;1 ≤ l ≤ b−1.

Case 2. Let a and b be odd. Obviously, every vertex of M lies on either the P
′

: hk1 − h(k+1)1 or P′′ : hkb − h(k+1)b detour,
similarly on either P

′′′
: h1l − h1(l+1) or P′′′′ : hal − ha(l+1) detour for some k, l (1 ≤ k ≤ a−1; 1 ≤ l ≤ b−1) . Suppose R

=
(
h1l −h1(l+1)

}
.Then the vertices of M lie on either P

′
1 : hk1 −h(k+1)1 detour or P

′
2 : hk1 −h(1 ≤ k ≤ a−1) . If k = 1,

P′
1 : h11,h12,h13, . . . ,h1(b−1),h1b,h2b,h2(b−1), . . . ,h24,h23,h22,h32,h33,h34, . . . ,h3(b−1),h3b, . . .

. . . ,h(a−2)b,h(a−1)b,hab,ha(b−1), . . . ,ha4,ha3,ha2,ha1,h(a−1)1,h(a−2)1, . . . ,h41,h31,h21

P′
2 : h11,h12,h13, . . . ,h1(b−1),h1b,h2b,h2(b−1), . . . ,h24,h23,h22,h32,h33,h34, . . . ,h3(b−1),h3b, ..

. . . ,h(a−1)b,h(a−1)(b−1), . . . ,h(a−1)4,h(a−1)3,h(a−1)2,ha2,ha1,h(a−1)1,h(a−1)2,ha2,ha1,h(a−1)1, . . .

. . . ,h41,h31,h21

Similarly, we find two different detour paths of P
′′
,P

′′′
and P′′′′, where 2 ≤ k ≤ a−1; 1 ≤ l ≤ b−1.

Case 3. Let a be even. Clearly, every vertex of M lies on P
′or P′′ detour, where P

′
: hk1−h(k+1)1 and P′′ : hkb−h(k+1)b. Then

R=
(
hk1, h(k+1)1

}
or R=

(
hkb, h(k+1)b

}
. As in Case 1, consider P

′
: h11 −h21, then

P
′
: h11 ,h12,h13, . . . ,h41, h31,h21.

Consider P′′ : h1b −h2b, where P′′ : h1b ,h1(b−1),h1(b−2), . . . ,ha(b−1),hab, h(a−1)b, . . . ,h3b,h2b.

In the same manner, we can find different detour paths of P
′ and P

′′
, where 2 ≤ k ≤ a−1

Case 4. Let b be even. Let R =
(
hal ,ha(l+1)

}
or R =

(
hal ,ha(l+1)

}
. Then the vertices of M lie on P

′′′
: h1l − h1(l+1) or

P′′′′ : hal −ha(l+1) detour (1 ≤ l ≤ b−1)
Now, consider P

′′′
: h11 −h12.

P
′′′

: h11 ,h21,h31, . . . ,ha1, ha2,h(a−1)2, . . . , h32, h22, h23, h33, . . . , h(a−1)(b−1), hab,h(a−1)b, . . . ,h3b,

h2b,h1b, h1(b−1),h1(b−2), ..., h13,h12.
Similarly,
P′′′′ : ha1 −ha2 : ha1 , h(a−1)1, . . . , h31,h21,h11 ,h12,h22 ,h32, . . . , h(a−1)2,h(a−1)3,
h(r−2)3, . . . ,h33 ,h23,h13 ,h14 , . . . ,h1(b−1),h1b,h2b,h3b, . . . ,h(a−1)b, hab, ha(b−1), . . . ,ha4,ha3,ha2.

In the same manner, we can find different detour paths of P
′′′and P′′′′, where 2 ≤ l ≤ α −1.

All the above four cases show that R is connected and<V (Pa □ Pb)−R > has no isolated vertices and so R is the dncr-set.
Hence dncr (G) = 2.

Remark 3.6 . Let M = Pa □ Pb be the mesh as shown in Figure 2 . If b = 2, then by Theorem 3.5 Pa □ P2 is a ladder graph
La and dncr (La) = 2.
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Fig 2. M = Pa □ Pb

Theorem 3.7. Let M = Pa □ Pb be a mesh of order ab(2 ≤ a ≤ b) . Let M+p be the graph expanded from M by adding a
pendent vertex to the δ -vertices of M. Then dncr(M+p ) = 2(a+b+2) .

Proof. Let M+p be a graph derived from M = Pa □ Pb (2 ≤ a ≤ b) by adding a pendent vertex to the δ -vertices of M. Let
Rp be a set of all pendent vertices of M+p. Then Rp = (pi : 1 ≤ i ≤ 4}. Now obviously, Rp is a dncr-set but not a connected
restrained detour set by Theorem 3.4. Therefore, a dncr-set R must contain all the pendent vertices and the boundary vertices.
SupposeR=Rp ∪Rb, whereRb is the set of all boundary vertices.Then (R|= (Rp |+ |

(
hik, hl j

}
|= 4+2(a+b) = 2(2+a+b) .

Hence all the vertices of M+p lie on some detour joining the vertices of R.Moreover, R is connected and<V (M+p )−R > has
no isolated vertices. Hence dncr(M+p ) = 2(a+b+2) .

Theorem 3.8 . Let M+kp be the graph obtained from M = Pa□ Pb (2 ≤ a ≤ b) by the addition of k-pendent vertices at each
δ -vertices of M.Then dncr

(
M+kp

)
= 2(a+b+2k) .

Proof. Let M+kp be a graph with
(
V
(
M+kp

)∣∣ = ab + 4k. Let Rp be a set of all pendent vertices added to M. Then
(Rp | = 4k. Since all the vertices of M+kp lie on some detour joining the pendent vertices in Rp, Rp is the minimum
detour set. Since Mp is not connected, we consider the sets R and Rb, the set of all boundary vertices. Then Rb =(
(hik : 1 ≤ k ≤ b; i = 1, a}∪{hl j : 1 ≤ l ≤ a; j = 1, b

}
. Suppose R = Rp ∪ Rb. Therefore, |R| = |Rp|+

∣∣{hik,hl j
}∣∣ = 4k +

2(a + b) = 2(a + b + 2k) Since R is connected and < V
(
M+kp

)
− R > has no isolated vertices, R is a dncr-set. Therefore

dncr(M+kp ) = 2(a+b+2k) .
Now, we discuss how the connected restrained detour number is altered by deleting the δ -vertices and △-vertices of the

mesh graph M.
Theorem 3.9. Let M−δ be the graph derived from M = Pa □ Pb (2 ≤ a ≤ b) by deleting the δ -vertices of M. Then−
Proof. Let M = Pa □ Pb (2 ≤ a ≤ b). Let M−δ be the graph derived by deletion of δ -vertices of M. Then we consider three

cases.
Case 1. Let M = Pa□ Pb (a = b) . Consider R to be a connected restrained detour set of M−δ .We have two subcases.
Subcase 1. Let a = b = 2. Since all the vertices of V (P2 □ P2) are the δ -vertices, the graph M−δ is the null graph. Hence

dncr
(
M−δ )= 0.

Subcase 2. Let a = b = 3. Then all the vertices of M−δ become the elements of R and so R = {h12,h21,h22,h23,h32} is a
dncr-set. Hence dncr

(
M−δ )= 5.

Case 2.When a ̸= 3, we have two subcases.
Subcase 1. Let a = 2 and b ≥ 3. When b = 3, the graph M−δ derived from Pa □ Pb becomes K2. Hence R =

V (M−δ ), dncr
(
M−δ )= 2. When b ≥ 4, M−δ is the Ladder graph La−2 =Pa−2□ P2. Hence dncr ( La−2) = 2.

Subcase 2. If a ≥ 4 and b ≥ 3, then R =
(
h1q, h(q+1)1

}
or

(
hqb, h(q+1)b

}
, where 2 ≤ q ≤ b−2, is a set of any two adjacent

vertices. Since all the vertices of M−δ lie on some detour joining the vertices of R, it is a minimum detour set. Moreover, R is
connected and<V (M−δ )−R > has no isolated vertices. Thus R becomes the dncr-set of M−δ and so dncr

(
M−δ )= 2.
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Case 3. Let a = 3,b ≥ 4. Since M−δ is a graph obtained from M by deletion of δ -vertices, produces the pendent vertices
h21 and h2b of M−δ . Then the dncr-set R consists of the pendent vertices and all the internal vertices of h21−h2b detour.
Thus R = (h21,h22, h23, . . . ,h2b} and so dncr

(
M−δ )= b.

Theorem 3.10. Let M−△ be the graph derived from M = Pa□ Pb(2 ≤ a ≤ b) by deleting the△-vertices of M. Then−
Proof. Let M = Pa□ Pb(2 ≤ a ≤ b) be a mesh. Let M−△ be a graph derived from M by the deletion of△-vertices of M. Let

R be the dncr-set of M−△ .We have two cases.
Case 1: Let r = 2. Consider the two subcases.
Subcase 1.When s = 2, the graph M−△ derived from P2□ P2 is the null graph. Since the△-vertices are also the δ -vertices

of M, the result follows from subcase 2 of case1of Theorem 3.6 that dncr
(
M−△ )

= 0.
Subcase 2. Let b > 2. Since the boundary vertices of degree 3 are the△-vertices of M = P2□ Pb, the graph M−△ becomes a

disjoint union of two paths of order 2. In this case, we cannot have the detour setR that is connected.Therefore dncr
(
M−△ )

= 0.
Case 2: Let a = b ≥ 3. Let R△ be a set of all △-vertices of M. Since △(M) = 4,R△ = (hi j : i ̸= 1, a; j ̸= 1, b

}
and so(

R△ ∣∣= (a−2)(b−2) .Thus M−△ = M−R△ . Hence |M−△ |= (M|−
(
R△ ∣∣ = ab− ((a−2)(b−2)) = 2(a+b−2) .Thus

M−△ is isomorphic to the even cycle of order 2(a+b−2) . Thus M−△ = C2(a+b−2). Then by Theorem 3.1, R is a set of two
adjacent vertices of M−△ and so dncr(M−△ ) = 2.

4 Conclusion
In this study, we have computed the connected restrained detour number of some standard graphs, the mesh graph and their
derived graphs. Derivation of similar results in the context of some other variants of detour number is an open area of research.
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